代写 statistic Point Process Spectral Analysis Examples

Point Process Spectral Analysis Examples

Example #1: Simple Poisson Process
10
9
8
7
6
5
4
3
2
1
0
0 100 200
300 400
500 600 700
800 900 1000
Time (msec)

Poisson ISI Histogram
700
600
500
400
300
200
100
0
0 50 100 150
ISI (msec)

Sample Spectrum from Poisson Data
50
0.5
0.45 0.4
40
0.35 0.3
30
0.25 0.2
20
0.15 0.1
10
0.05
0
0
0.05 0.1
0.15 0.2
0.25 0.3
0.35 0.4 0.45
Frequency (kHz)
Power (Hz)

Example #1: Simple Poisson Process
10
9
8
7
6
5
4
3
2
1
0
0 100 200
300 400
500 600 700
800 900 1000
Time (msec)

Example #2: Hard Refractory Period
10
9
8
7
6
5
4
3
2
1
0
0 100 200
300 400
500 600 700
800 900 1000
Time (msec)

Poisson ISI Histogram
700
600
500
400
300
200
100
0
0 50 100 150
ISI (msec)

Refractory Process ISI Histogram
700
600
500
400
300
200
100
0
0 50 100 150
ISI (msec)

Sample Spectrum from Poisson Data
50
0.5
0.45 0.4
40
0.35 0.3
30
0.25 0.2
20
0.15 0.1
10
0.05
0
0
0.05 0.1
0.15 0.2
0.25 0.3
0.35 0.4 0.45
Frequency (kHz)
Power (Hz)

Refractory Process Sample Spectrum
50
0.5
0.45 0.4
40
0.35 0.3
30
0.25 0.2
20
0.15 0.1
10
0.05
0
0
0.05 0.1
0.15 0.2
0.25 0.3
0.35 0.4 0.45
Frequency (kHz)
Power (Hz)

Example #1: Simple Poisson Process
10
9
8
7
6
5
4
3
2
1
0
0 100 200
300 400
500 600 700
800 900 1000
Time (msec)

Example #3: Duplicate each spike at 10 ms lag
10
9
8
7
6
5
4
3
2
1
0
0 100 200
300 400
500 600 700
800 900 1000
Time (msec)

10 ms Repetition ISI Histogram
1000
900
800
700
600
500
400
300
200
100
0
0 50 100 150
ISI (msec)

Repeated Spike Sample Spectrum
50
0.5
40
0.4
30
0.3
20
0.2
10
0.1
0
0
0.05 0.1
0.15 0.2
0.25 0.3
0.35 0.4 0.45
Frequency (kHz)
Power (Hz)

Example #4: Realistic Baseline Spiking Data
10
9
8
7
6
5
4
3
2
1
0
0 100
200 300 400
500 600 700 800
900 1000
Time (msec)

700
600
500
400
300
200
100
Baseline Spiking ISI
0
0 50 100 150
ISI (msec)

Sample Spectrum for Baseline Spiking
50
0.5
0.45 0.4
40
0.35 0.3
30
0.25 0.2
20
0.15 0.1
10
0.05
0
0
0.05 0.1
0.15 0.2
0.25 0.3
0.35 0.4 0.45
Frequency (kHz)
Power (Hz)

Case 1: An Analysis of the Spiking Activity of Retinal Neurons in Culture (Iygengar and Liu, 1997)
Retinal neurons are grown in culture under constant light and environmental conditions. The spontaneous spiking activity of these neurons is recorded. The objective is to develop a statistical model which accurately describes the stochastic structure of this activity.

Retinal Baseline Data Spectrum
160
140
120
100
80
60
40
20
Power (Hz)
0
0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz)

Retinal Baseline Data Spectrogram
50
45
40
35
30
25
20
15
10
5 0
5 10 15 20 25
Time (sec)
Frequency (Hz)

Autocorrelation of interspike intervals
1.2 1 0.8 0.6 0.4 0.2 0 -0.2
-10 -8 -6 -4 -2 0 2 4 6 8 10
Lag
Correlation coefficient

800
700
600
500
400
300
200
100
0
0 0.05 0.1
0.15 0.2
0.25 0.3 0.35
0.4 0.45 0.5
Interval Spectrum
Inverse Lag
Power

0.12
0.1
0.08
0.06
0.04
0.02
0
10 20 30 40 50 60 70 80 90
ISI Histogram
Exponential Gamma
Inverse Gaussian Order 50 GLM
ISI (msec)
Probability Density

Hippocampal Place Field
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

40
35
30
25
20
15
10
5 0
0 100 200
300 400
500 600 700
800 900 1000
Hippocampal Place Field

Place Field Spectrogram
45
40
35
30
25
20
15
10
5
1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (msec)
Frequency (Hz)

Place Field Spectrogram
50
45
40
35
30
25
20
15
10
5
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (msec)
Frequency (Hz)

Place Field Analysis from Problem Set #3
S ⎧∑p ⎫ λ(t | H ) = λ (xN(t),yN(t))exp β ⋅spikes_hist(:,i)
t
⎨⎬
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
i
⎩i=1 ⎭
0 0.2 0.4 0.6 0.8 1
Empirical CDF
Model CDF

Conclusions
• Point process spectral analysis is useful for visualizing point process data and suggesting classes of conditional intensity models.
• The interpretation of sample point process spectra differs from that of continuous valued signals.