代写 CSE 2331 Homework 2 Winter, 2019

CSE 2331 Homework 2 Winter, 2019
Give the asymptotic running time of each the following functions in Θ no- tation. Justify your answer. (Show your work.)
WRITE YOUR ANSWERS ON A SEPARATE SHEET OF LINED PAPER. DO NOT HAND IN A MARKED UP QUESTION SHEET.
1.
2.
1 2
3 4 5 6 7
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2
3 4 5 6 7 8 9
Func1(n)
s←0; fori←23to⌊n3/2⌋do
for j ← 15 to i2⌊(log5(i))2⌋ do s ← s + i − j;
end end
return (s);
Func2(n)
s←0;
for i ← ⌊n/2⌋ to ⌊n log4(n)⌋ do
for j ← i to ⌊nlog4(n)⌋ do for k ← 3j to 3j + 216 do
s ← s + i − j + k; end
end end
return (s);
Func3(n)
s←0;
fori←7n2 ton3 do √
j←⌊ i⌋;
while (j ≥ 4) do
s ← s + i − j;
j ← j − 17 ; end
end return (s);
Func4(n)
s←0;
for i ← ⌊n/2⌋ to ⌊n3/2⌋ do
for j ← ⌊n/10⌋ to i do for k ← j to i do
s ← s + i − j + k; end
3.
4.
/* Note: Subtraction */
end end
return (s);
1

5.
1 2 3 4 5 6 7 8 9
10 11
1 2 3 4 5 6 7 8 9
10 11
1 2 3 4 5 6 7 8 9
1 2 3
4 5 6 7 8 9
Func5(n)
s←0;
i←29;
while (i < n2) do j ← 6; while j ≤ 5n3 do s ← s + i − j; j ← 3 ∗ j; end √ i←i+⌈5 n⌉; end /*Note: Addition*/ 6. return (s); Func6(n) s←0; i←n; √ while (i < ⌊n3 j ← 4; while (j < 3i) do s ← s + i − j; j←j+17; end i ← 5 ∗ i ; end return (s); Func7(n) s←0; fori←3to⌊nlog3(n)⌋do /*Note: Addition*/ /* Note: Multiplication */ n⌋) do 7. 8. j ← i2; √ while (j >⌈
s ← s + i − j;
j ← ⌊j/7⌋ ; end
end return (s);
Func8(n)
s←0;
i ← ⌊n log9 (n)⌋; while (i > 23) do
/* Note: Division by i
for j ← 62 to ⌊n2 log7(n)/i⌋ do
i⌉ do
/* Note: Division */
s ← s + i − j; end
i ← ⌊i/3⌋ ; end
return (s);
*/
/* Note: Division */
2

9.
10.
1 2 3 4 5 6 7 8 9
10 11
1 2 3 4 5 6 7 8 9
10 11
Func9(n)
s←0;
i ← ⌊√n⌋; while(i>3)do
j ← 5;
while (j < n4) do s ← s + i − j; j ← (1.1) ∗ j ; end i ← ⌊i/12⌋ ; end return (s); Func10(n) s←0; i←25; while (i < n3) do j ← 6; while (j < i2) do s ← s + i − j; √ j←j+⌊ i⌋; end i ← 7 ∗ i ; end return (s); /* Note: Multiplication */ /* Note: Division */ 3 /*Note: Addition*/ /* Note: Multiplication */