程序代写代做代考 C See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339311383

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339311383
Estimation of the final size of the coronavirus epidemic by the SIR model Method · February 2020
CITATIONS
8
1 author:
Milan Batista
University of Ljubljana
139 PUBLICATIONS 619 CITATIONS SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Port of Koper Industrial Risk Assessment View project contingency plan for Port of Koper View project
READS
24,568
All content following this page was uploaded by Milan Batista on 21 March 2020. The user has requested enhancement of the downloaded file.

21.03.2020 21:57
Estimation of the final size of the coronavirus epidemic by the SIR model
Milan Batista University of Ljubljana, Slovenia milan.batista@fpp.uni-lj.si (Feb 2020)
Abstract.
In the note, the SIR model is used for the estimation of the final size of the coronavirus epidemic. The current prediction is that the size of the epidemic will be about 85 000 cases. The note complements the author’s note [1]
1. Introduction
In this note, we will try to estimate a final epidemic size by the SIR model [2, 3]. The program implements the model is available at
https://www.mathworks.com/matlabcentral/fileexchange/74658-fitviruscovid19
The model equations are
2. The SIR model
dS    IS , (1) dt N
dI   IS  I , (2) dt N
dR  I , (3) dt
where t is time, S t is the number of susceptible persons at time t 
1
,IIt isthe 
number of infected persons at time t, R t is the number of recovered persons in time 

21.03.2020 21:57
t.  is the contact rate, .and 1  is the average infectious period. From (1),(2),(3) we
obtain total population size N
N  S  I  R  const. (4) The initial conditions are S 0 S0 , I 0 I0 , R0 R0 .
Eliminating I from (1) and (3) yield
In the limit t   the number of susceptible people left S is
R is t
N  S  R . From this, and (6) the equation for R is
R0  0 and ).
Now the available data is a time series of the total number of cases C, i.e.,
(7)
 
SS exp RR. (5) 0N0

 
S Sexp R R, (6) 0N0

where
he final number of recovered persons. Because the final number of
infected people is zero, we have, using (4),
 
R NSexp R R. (8) 0N0

In order to use the model, we must estimate model parameters  ,  and initial values
S0 and I0 from available data (we set
I0 C1
CIR. (9) We can estimate the parameters and initial values by minimizing the difference between
the actual and predicted number of cases, i.e., by minimizing
Ct Ct ,,S0 min, (10)
ˆ2
where Ct C1,C2,,Cn are given number of cases in times t1,t2,,tn and
ˆ ˆˆ ˆ
Ct  C1,C2,,Cn are corresponding estimates calculated by the model. For the
2

21.03.2020 21:57
practical calculation, we use MATLAB’s function fminsearch and for the
integration of the model equation MATLAB’s function ode45. 3. Results
The results of the calculation are shown in Table 1 and on Figure 1. From data in Table 1, we see that all data sets have high R2 (>0.98). Also, we can see that the final number of recovered persons converge and the predicted values do not differ substantially; however, the predicted total population involved differs substantially. Here we note that from day 28, the collection of data changed. Until day 28, the estimated epidemic size was about 52 000 infections; after that prediction change to about 85 700 infections.
Table 1. Convergence study. After day 28, the method of data collection change.
DayNS RR,nR,n1R2
12.feb.20
13.feb.20 14.feb.20 15.feb.20 16.feb.20 17.feb.20 18.feb.20 19.feb.20 20.feb.20 21.feb.20 22.feb.20 23.feb.20 24.feb.20
28 551513
29 1300538 30 1434310 31 1203132 32 1002252 33 864976 34 774076 35 683791 36 619431 37 574963 38 544793 39 522591 40 506492
473888
1189616
1318035
1095609
901990
769448
681530
594070
531645
488460
459126
437513
421823
77625
110922
116275
107523
100262
95528
92546
89722
87787
86503
85667
85078
84669
1.429 2.897 2.689 1.077
0.988
0.988 0.990 0.991 0.992 0.993 0.994 0.994 0.994 0.994 0.995 0.995 0.995
1.048 4.026 0.925 4.157 0.932 3.905 0.953 3.624 0.969 3.387 0.969 3.205 0.978 2.998 0.985 2.835 0.990 2.712 0.993 2.624 0.993 2.557 0.995 2.506
3.854 1.045 3.988 1.042 3.730 1.047 3.441 1.053 3.198 1.059 3.010 1.065 2.798 1.071 2.630 1.078 2.504 1.083 2.413 1.087 2.343 1.091 2.291 1.094
3

21.03.2020 21:57
Figure 1. Actual and predicted number of cases by the SIR model and logistic model (data up to 25 Feb 2020)
Having a series of final predictions, we can estimate the series limit by Shanks transformation [4, 5]
R R R2 R  ,n 1 ,n 1 ,n
. (11)
R,n1 R,n1 2R,n
For data from Table 1, the current prediction is 84085 cases (Table 2).
Table 2. Iterated Shanks transformation.
day R
32 100262
33 95528
34 92546
35 89722
36 87787
37 86503
38 85667
39
40
R(R )
87470
39247
83575
83971
84107
83673
83740
R(R(R )) 62344
R(R(R(R ))) R(R(R(R(R ))))
85078 84669
83974 84181 84179 84084 84003 84499 83731
4. Conclusion
84085
4

21.03.2020 21:57
If a method of data collection will not change again, and if the situation will remain stable, then by the SIR model, the predicted size of the epidemic is about 84 100 cases. This prediction is comparable with the current prediction 84 000 infections, by the empirical logistic model [6] (see Fig 2).
Figure 2. Comparison of models predictions (data up to 25.Feb 2020)
Appendix. MATLAB script
%SIR model – Dynamic of epidemic
% % %
% % %
Reference: https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
Variables
S – # of susceptible
I – # of infected
R – # recovered
% Parameters: % beta
% gamma
— 1/beta = Tc – typical time between contacts — 1/gamma = Tr – typical time until recovery — =S+I+R=const
%
%
% RN = beta/gamma — basic reproduction number (ratio)
N
Derived parameters:
% History:
% 23.Feb.2020 MB Created
global beta gamma N % parameters
global S0 I0 R0 % initial values (normalized S0=1)
5

21.03.2020 21:57
global C % number of infected
global init % initial guess
close all
% get data
[CC,date0] = getData();
fprintf(‘%12s %3s %10s %10s %10s %7s %7s %7s %7s\n’,… ‘Date’,’Day’,’N’,’Sinf’,’Rinf’,’beta’,’gamma’,’R0′,’R2′) init = false;
for ii = 28:length(CC)
% get data
C = CC(1:ii);
% estimate model parameters
b = parest();
% final number
Rinf = Rmax();
Sinf = S0*exp(-beta/gamma/N*(Rinf – R0));
% calculate R2
tspan = 0:length(C)-1; % final time
ic = [S0 I0 R0]’; % initial conditions
opts = []; % no options set
[~,z] = ode45( @SIR, tspan, ic, opts);
z = z(:,2)+z(:,3);
zbar = sum(C)/length(C);
SStot = sum((C – zbar).^2);
SSres = sum((C – z’).^2);
R2 = 1 – SSres/SStot;
% print results
fprintf(‘%12s %3d %10d %10d %10d %7.3f %7.3f %7.3f %7.3f\n’,… datestr(date0+ceil(length(C)-
1)),ceil(length(C)),round(N,0),… round(Sinf,0),round(Rinf,0),beta,gamma,beta/gamma,R2)
% fprintf(‘Estimated parameters\n’)
% fprintf(‘ End date
%s\n’,datestr(date0+ceil(length(C)-1))); % fprintf(‘ Day number
% fprintf(‘ Population size
% fprintf(‘ Initial infected
% fprintf(‘ Remain susceptible
% fprintf(‘ Total recovered
% fprintf(‘ Contact rate
% fprintf(‘ recovery rate
% fprintf(‘ Recovery time
% fprintf(‘ Reproduction number
end % fprintf(‘ R2
%d\n’,ceil(length(C)));
%d\n’,round(N,0));
%d\n’,round(z(1,2),0));
%d\n’,round(Sinf,0));
%d\n’,round(Rinf,0));
%g\n’,beta);
%g\n’,gamma);
%g\n’,1/gamma);
%g\n’,beta/gamma);
%g\n’,R2);
% set parameters
tspan = 0:2*length(C); % final time
ic = [S0 I0 R0]’; % initial conditions
opts = []; % no options set
% simulate
[t,z] = ode45( @SIR, tspan, ic, opts);
6

21.03.2020 21:57
% plot results
figure
hold on
plot(t,z,’LineWidth’,2) legend(‘Susceptible’,’Infected’,’Recovered’,…
‘Location’,’best’,’FontSize’,12)
xlabel(‘Day (after 16 jan 2020)’)
ylabel(‘Cases’)
grid on
hold off shg
% plot comparsion
figure
hold on plot(t,(z(:,2)+z(:,3))’,’k’,’LineWidth’,2) scatter(1:length(C),C,50,’filled’) legend(‘Predicted’,’Actual’,…
‘Location’,’best’,’FontSize’,12)
xlabel(‘Day (after 16 jan 2020)’)
ylabel(‘Cases’)
grid on
hold off shg
% save to global
ta = t;
Ca = z(:,2)+z(:,3);
function dzdt = SIR(~,z)
%SIR model
%x(1)=S, x(2)=I,x(3)=R
global beta gamma N
S = z(1);
I = z(2);
R = z(3);
N = S + I + R;
end dzdt = [ -beta*I*S/N; beta*I*S/N – gamma*I; gamma*I];
function b = iniguess()
%INIGUESS Obtain initial guess
global beta gamma
global S0 I0 R0 % initial values
global C
global init
if ~init
beta = 1/0.00267103;
gamma = 1/0.00267232;
S0 = 1e8;
I0 = C(1);
R0 = 0;
end init = true;
b(1) = beta;
b(2) = gamma;
end b(3) = S0;
function b = parest
7

21.03.2020 21:57
%PAREST Parameter estimation
global beta gamma N
global S0 I0 R0 % initial values
maxiter = 20000;
maxfun = 20000;
b0 = iniguess();
options = optimset(‘Display’,’off’,’MaxIter’,maxiter,…
‘MaxFunEvals’,maxfun);
[b, fmin,flag] = fminsearch(@fun,b0,options); % disp(‘Exit condition:’)
% disp(flag)
% disp(‘Smallest value of the error:’);
% disp(fmin)
fun(b); % obtain x ped
beta = b(1);
gamma = b(2);
S0 = b(3);
end N = S0 + I0 + R0;
function f = fun( b)
%FUN Optimization function
global beta gamma S0 I0 R0
global C Ca
% set parameters
beta = b(1);
gamma = b(2);
S0 = b(3);
tend = length(C);
tspan = 0:tend-1;
ic = [S0 I0 R0]’;
% solve ODE
% time interval
% initial conditions
try [tsol,zsol] = ode45(@SIR,tspan,ic); catchf = NaN;
end return
% check if calculation time equals sample time
if length(tsol) ~= length(tspan)
f = NaN;
end return
Ca = (zsol(:,2)+zsol(:,3))’; % calculated number of cases f = norm(C – Ca);
end
function r = Rmax()
%FSOLVE Calculate number of recoverd individuals after t=inf
global N S0 beta gamma R0
RN = beta/gamma;
r = fzero(@f,[0,S0]);
%———————–
function z = f(x)
8

21.03.2020 21:57
end end z = x – (N – S0*exp(-RN*(x – R0)/N));
function [C,date0] = getData()
%GETDATA Coronavirus data
% data from 16 Jan to 21 Jan https://i.redd.it/f4nukz4ou9d41.png % data from from 22 Jan 2020 to 13 Feb 2020 are from
% https://www.worldometers.info/coronavirus/ date0=datenum(‘2020/01/16′); % start date
C=[
45
62
121
198
291
440
580
845
1317
2015
2800
4581
6058
7813
9821
11948
14551
17389
20628
24553
28276
31439
34876
37552
40553
43099
44919
60326
64437
67100
69197
71329
73332
75198
75700
76676
77673
78651
79400
80088
%———– add new data here
]’;
end
References
9

21.03.2020 21:57
[1] M. Batista, Estimation of the final size of the coronavirus epidemic by the logistic model, medRxiv (2020) 2020.02.16.20023606.
[2] H.W. Hethcote, The Mathematics of Infectious Diseases, SIAM Review 42(4) (2000) 599-653.
[3] I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, medRxiv (2020) 2020.02.12.20021931.
[4] D. Shanks, Non-linear Transformations of Divergent and Slowly Convergent Sequences, Journal of Mathematics and Physics 34(1-4) (1955) 1-42.
[5] C.M. Bender, S.A. Orszag, Advanced mathematical methods for scientists and engineers I asymptotic methods and perturbation theory, Springer, New York, 1999. [6] M. Batista, Estimation of the final size of the coronavirus epidemic by the logistic model, 2020 DOI: 10.13140/RG.2.2.36053.37603.
View publication stats
10