CS作业代写 TUB 2021

Kernel Methods Introduction to SVMs, KPCA, RDE
Lecture by Klaus- ̈ller, TUB 2021

Basic ideas in learning theory

Copyright By PowCoder代写 加微信 powcoder

Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Basic ideas in learning theory II
Klaus- ̈ller Lecture at TUB 2021

Structural Risk Minimization: the picture

VC Dimensions: an examples
Klaus- ̈ller Lecture at TUB 2021

Linear Hyperplane Classifier
Klaus- ̈ller Lecture at TUB 2021

VC Theory applied to hyperplane classifiers
Klaus- ̈ller Lecture at TUB 2021

Feature Spaces & curse of dimensionality
Klaus- ̈ller Lecture at TUB 2021

Margin Distributions – large margin hyperplanes
Klaus- ̈ller Lecture at TUB 2021

Feature Spaces & curse of dimensionality
Klaus- ̈ller Lecture at TUB 2021

Nonlinear Algorithms in Feature Space
Klaus- ̈ller Lecture at TUB 2021

The kernel trick: an example
Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Kernology II

Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Dual Problem
Klaus- ̈ller Lecture at TUB 2021

Klaus- ̈ller Lecture at TUB 2021

Kernel Trick
Klaus- ̈ller Lecture at TUB 2021

Support Vector Machines in a nutshell
 rsp. K(x,y) = (x) (y) 
good theory
non-linear decision by implicitely mapping the data
into feature space by SV kernel function K
Klaus- ̈ller Lecture at TUB 2021

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com