程序代写代做代考 AI C MATH1061/7861, Mon 31 Aug 2020 Question 1. Prove that, ∀n ∈ N, 5 | (7n − 2n).

MATH1061/7861, Mon 31 Aug 2020 Question 1. Prove that, ∀n ∈ N, 5 | (7n − 2n).
FI
PTI work mod 5
mod 5 mods
0 mods
7 2 5 515 it true
Pf
2
Induction Base case n
By
indiction
7 7127 2472 57 51712 Hn
2J
7 E 7
7
i
572
7
2
Induetve
let step 57 tt
Since
5
ad 572
nZl assume 2
Want to prune
7
5 7 2 It
772 t7.2Tu24 772xI72
5 77 an
0
2
772
22
E
E 2 mod 5
2n
7.7
22
2

I
Challenge A. Prove that, ∀n ∈ N, n5/5 + n3/3 + 7n/15 ∈ Z.
Challenge B. Prove that, ∀n ∈ N, 25 | (16n + 10n − 1).
Question 2. Let a0, a1, a2, … be a sequence defined as follows:
a0 = 6, a1 = 9, a2 = 12, and ai = ai−1 − ai−3 for each integer i ≥ 3.
Determine the term a4, and prove that 3 | ai for each integer i ≥ 0.
tjfaim stongindee.to
6 EI
Use Basie
induction
Pf
Inducteeotp let it 3 assume 3 90,9 ai
Then
strong casts
3lai for all
By induction
EEZ 31 ai
3346g
i o iz
ai
iae3Yi
ai ai Eimi.EE
i
z
3ke
31ai ti IO
Komatik
e
9392ao 126 aE
Tse
by inel hyp K

Theorem
All In C IN
numbers are equal if 04,04 xn HR
Pf
ht
byi
Base
Then
ex
Inductee
Prone
ntl
Scu scat CIR
blobb
so collection
EiIii by ind hyp
i
equal AI equali
Inti th
then fall
ie
of n reals
EkEf
induction
i All numbers are equal
By
the
I
then
let Sci EIR
Sc
for
let
step Assume true for some n
se
x Xz en
x i

Induction unpin
then Pcn Strong Induction
WIP
wop
just iP iontradiekuni
Gexap6 ketists
gg
an.am
use
Which
method Fiore
All
strong induction
an.ie
eaExefEEEiEI
counterexample
By MMM
woe such a
reduce to smaller case
See smallest
I
PILLfalse
ie
PG PH1 true
f ki 7 Prove Ifk directly