代写代考 {-# LANGUAGE InstanceSigs,ScopedTypeVariables,TupleSections #-}

{-# LANGUAGE InstanceSigs,ScopedTypeVariables,TupleSections #-}
— DO NOT DISABLE WARNINGS IN YOUR CODE
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

Copyright By PowCoder代写 加微信 powcoder

— | Defines the ‘Lambda’ datatype and operations on it.
module Data.Lambda (
Lambda(..),DebugLambda(..),showsDebug,showDebug,recLambda
,usesIndex
,beta,eta,betaNormalise,etaNormalise,normalise,betaNormal,etaNormal,normal
,lamToShowS,lamToString,lamToBool,lamToInt

import Control.Applicative
import Data.List hiding (map)
import Data.Maybe
import Data.Bool
import Prelude hiding (map)
import GHC.Stack
— import Debug.Trace

— >>> import Data.Lambda.Builder
— >>> import Data.Bifunctor
— >>> import GHC.Float
— >>> import Test.QuickCheck
— >>> import GHC.Base (maxInt)
— buildInt :: Int -> Lambda
— buildInt = build . intToLam
— equating :: Eq a => (b -> a) -> b -> b -> Bool
— equating f a b = f a == f b
— instance Eq Lambda where
— (LamVar i) == (LamVar j) = i == j
— (LamAp m n) == (LamAp x y) = m == x && n == y
— (LamAbs _ e) == (LamAbs _ f) = e == f
— _ == _ = False
— instance Eq Builder where
— (==) = equating build
— instance Arbitrary Builder where
— arbitrary = intToLam <$> chooseInt (0,10)
— instance Arbitrary Lambda where
— arbitrary = build <$> arbitrary

— | A representation of the untyped lambda calculus.
— Variables are represented with indices.
— >>> build $ ‘x’ `lam` ‘y’ `lam` term ‘x’
data Lambda = LamVar Int — A bound variable.
| LamAp Lambda Lambda — Application of one term to another.
| LamAbs Char Lambda — A lambda abstraction.
| LamShow (Lambda -> Maybe ShowS) — Converts a ‘Lambda’ to a ‘String’.

— | A type used to recursively show a ‘Lambda’.
type ShowLam = Bool — Flag if this term is the head term of a chain of applications.
-> Bool — Flag if this term is the tail term of a chain of applications.
-> Int — Value indicating the depth of this term in an abstraction.
-> String — The context of unique variable names.
-> (Bool,ShowS) — A flag if the term is an abstraction and a show function of the term.

instance Show Lambda where
showsPrec :: Int -> Lambda -> ShowS
showsPrec _ l = snd (recLambda recVar recAp recAbs recShow l True True 0 [])
recVar :: Lambda -> Int -> ShowLam
recVar _ i _ _ _ vars = (False,showChar var)
var = fromMaybe errStr $ lookup i $ zip [0..] vars
errStr = error (“No variable exists with index `” ++ show i
++ “` indexes only go up to `” ++ show (length vars – 1) ++ “`”)
recAp :: Lambda -> ShowLam -> ShowLam -> ShowLam
recAp (LamAp (LamShow f) n) _ n’ isHead isTail absDepth vars =
(n’ isHead isTail absDepth vars) — Show the remaining value as normal.
$ f $ normal n
recAp _ m n isHead isTail _ vars = let
(_,m’) = m True False 0 vars
(_,n’) = n False isTail 0 vars
ss = m’ . n’
in (False,if isHead then ss else open . ss . close)
recAbs :: Lambda -> Char -> ShowLam -> ShowLam
recAbs _ c e _ isTail absDepth vars = let
— | Find a free variable name.
altC = fromMaybe (error “exhausted all variable names”)
$ find (`notElem`vars) $ [‘a’..’z’] ++ [‘A’..’Z’]
— | A unique variable name.
c’ = if c /= ‘_’ && c `elem` vars then altC else c
— | The context for the body.
vars’ = c’:vars
(isAbs,e’) = e True True (absDepth + 1) vars’
— | Shows all of the immediate context along with the body.
altBody =
(flip $ (.) . showChar)
(showChar c’)
(take absDepth vars) . dot . e’
— | Shows the body, optionally finalising the chain of abstractions.
body = if isAbs then e’ else altBody
— | Shows the body, optionally beginning the chain of abstractions.
ss = if absDepth /= 0 then body else lambda . body
in (True,if isTail then ss else open . ss . close)
recShow :: Lambda -> (Lambda -> Maybe ShowS) -> ShowLam
recShow _ _ _ _ _ _ = (False,error “Can’t show a on its own”)
[open,close,lambda,dot] = showChar <$> “()\\.” :: [ShowS]

— | A type which provides a verbose Show instance for ‘Lambda’.
newtype DebugLambda = MkDebug {
getDebugLambda :: Lambda — The wrapped ‘Lambda’.

instance Show DebugLambda where
showsPrec :: Int -> DebugLambda -> ShowS
showsPrec _ = showsDebug . getDebugLambda

BEGIN OPERATIONS DEFINITIONS

— | A type used to recursively show a ‘Lambda’ with debub syntax.
type ShowLamDebug = String — The context of unique variable names.
-> ShowS — A show function of the term.

— | A very verbose show function for ‘Lambda’s which includes all brackets.
— Name clashes are handled by reassigning the second occourance to the first
— available name.
— Missing names are displayed as an underscore followed by the index.
— >>> let num = build $ intToLam 2
— >>> putStrLn $ showsDebug num “”
— (\f.(\x.(f (f x))))
showsDebug :: HasCallStack => Lambda -> ShowS
showsDebug l = recLambda recVar recAp recAbs recShow l []
— | Show the free variable and the index.
recVar :: Lambda -> Int -> ShowLamDebug
recVar _ i vars = maybe (showChar ‘_’ . shows i) showChar $ lookup i $ zip [0..] vars
recAp :: Lambda -> ShowLamDebug -> ShowLamDebug -> ShowLamDebug
recAp (LamAp (LamShow f) n) _ n’ vars =
(showString “ ” . n’ vars) — Show the remaining value as normal.
((. close) . (open .)) — Include brackets around the output.
$ f $ normal n
recAp _ m n vars = open . m vars . space . n vars . close
recAbs :: Lambda -> Char -> ShowLamDebug -> ShowLamDebug
recAbs _ c e vars = open . lambda . showChar c’ . dot . e (c’:vars) . close
— | Find a free variable name.
altC = fromMaybe (error “exhausted all variable names”)
$ find (`notElem`vars) $ [‘a’..’z’] ++ [‘A’..’Z’]
— | A unique variable name.
c’ = if c /= ‘_’ && c `elem` vars then altC else c
recShow :: Lambda -> (Lambda -> Maybe ShowS) -> ShowLamDebug
recShow _ _ _ = showString “
[open,close,space,lambda,dot] = showChar <$> “() \\.”

— | A very verbose show function for ‘Lambda’s which includes all brackets.
— Name clashes are handled by reassigning the second occourance to the first
— available name.
— Missing names are displayed as an underscore followed by the index.
— >>> let num = build $ intToLam 2
— >>> putStrLn $ showDebug num
— (\f.(\x.(f (f x))))
showDebug :: Lambda -> String
showDebug = flip showsDebug “”

— | This is the elimination function for ‘Lambda’.
— You can think of this function as for ‘Lambda’.
— Each case receives the ‘Lambda’ the function was called on and the results
— of the recursive calls.
recLambda :: forall a. (Lambda -> Int -> a) — The eliminator for lambda variables.
-> (Lambda -> a -> a -> a) — The eliminator for lambda application.
-> (Lambda -> Char -> a -> a) — The eliminator for lambda abstractions.
-> (Lambda -> (Lambda -> Maybe ShowS) -> a) — The eliminator for LamShow.
-> Lambda — The lambda to recur over.
-> a — The final result.
recLambda recVar recAp recAbs recShow = go
— | Case analysis for Lambda elimination.
go :: Lambda -> a
go i) = recVar l i
go m n) = recAp l (rec m) $ rec n
go c e) = recAbs l c $ rec e
go f) = recShow l f
— | Recursive elimination of Lambdas.
rec :: Lambda -> a
rec = recLambda recVar recAp recAbs recShow

— | Performs a single beta reduction step.
— >>> beta $ build $ (‘x’ `lam` term ‘x’) `ap` intToLam 0
— Just \fx.x
beta :: Lambda -> Maybe Lambda
beta l = listToMaybe $ betaNormalise l

— | Performs a single eta reduction step.
— >>> eta $ build $ ‘x’ `lam` ‘y’ `lam` term ‘x’ `ap` term ‘y’
— Just \x.x
eta :: Lambda -> Maybe Lambda
eta l = listToMaybe $ etaNormalise l

— | A type used to beta reduce a ‘Lambda’.
type BetaLam = Int — The index of the argument.
-> Lambda — The updated term.

— | Produces a stream of beta normalisation steps.
— >>> let true = boolTo
— >>> let false = boolTo
— >>> let not = ‘b’ `lam` term ‘b’ `ap` false `ap` true
— >>> betaNormalise $ build $ not `ap` true
— [(\t_.t)(\_f.f)\t_.t,(\__f.f)\t_.t,\_f.f]
betaNormalise :: Lambda — The term to normalise.
-> [Lambda] — The reduction steps.
betaNormalise (LamAp (LamAbs _ body) expr) =
liftA2 (:) id betaNormalise
$ recLambda recVar recAp recAbs recShow body 0 where
— | Cache the fixed Lambdas.
fixed :: [Lambda]
fixed = fixDepth <$> [0..]
— | Fix the variables by offsetting them by the terms new depth.
fixDepth :: Int -> Lambda
fixDepth = recLambda recVar’ recAp’ recAbs’ recShow’ expr 0
recVar’ l i depth’ offset
| i >= depth’ = LamVar $ i + offset
| otherwise = l
recAp’ _ = liftA2 (liftA2 LamAp)
recAbs’ _ c e depth’ = LamAbs c . e (depth’ + 1)
recShow’ l _ _ _ = l
recVar :: Lambda -> Int -> BetaLam
recVar l i arg
| i == arg = fixed !! arg
| i > arg = LamVar $ i – 1
| otherwise = l
recAp :: Lambda -> BetaLam -> BetaLam -> BetaLam
recAp _ = liftA2 LamAp
recAbs :: Lambda -> Char -> BetaLam -> BetaLam
recAbs _ c e arg = LamAbs c $ e $ arg + 1
recShow :: Lambda -> (Lambda -> Maybe ShowS) -> BetaLam
recShow l _ _ = l
betaNormalise (LamAp (LamAp (LamShow _) _ _)) n) = betaNormalise $ LamAp m n
betaNormalise (LamAp _) n) = let
f (LamShow _) _) = n’
f n’ = LamAp m n’
in f <$> betaNormalise n
betaNormalise (LamAp m n) = let
m’ = listToMaybe $ betaNormalise m
ns = betaNormalise n
(LamAp m <$> ns) — Reduce the right hand side.
(liftA2 (:) id betaNormalise . (`LamAp` n)) — Continue reducing with the updated right.
betaNormalise (LamAbs c e) = LamAbs c <$> betaNormalise e
betaNormalise _ = []

— | A type used to eta reduce a ‘Lambda’.
type EtaLam = Int — The index of the argument being eta reduced.
-> Bool — A flag if the argument is used in the term.

usesIndex :: Int -> Lambda -> Bool
usesIndex = flip $ recLambda recVar recAp recAbs recShow
recVar :: Lambda -> Int -> EtaLam
recVar _ = (==)
recAp :: Lambda -> EtaLam -> EtaLam -> EtaLam
recAp _ = liftA2 (||)
recAbs :: Lambda -> Char -> EtaLam -> EtaLam
recAbs _ _ = (. (+1))
recShow :: Lambda -> (Lambda -> Maybe ShowS) -> EtaLam
recShow _ _ _ = False

— | Produces a stream of eta normalisation steps.
— >>> let if’ = ‘b’ `lam` ‘t’ `lam` ‘f’ `lam` term ‘b’ `ap` term ‘t’ `ap` term ‘f’
— >>> etaNormalise $ build if’
— [\bt.bt,\b.b]
etaNormalise :: Lambda -> [Lambda]
etaNormalise (LamAbs c (LamAp m (LamVar 0)))
— If the param is not used in `m` then we can eta reduce.
| not $ usesIndex 0 m = liftA2 (:) id etaNormalise $ fixDepth m
| otherwise = LamAbs c <$> etaNormalise m
— | Fix indicies which are affected by an eta reduction.
fixDepth :: Lambda -> Lambda
fixDepth l = snd $ recLambda recVar’ recAp’ recAbs’ recShow’ l 0
recVar’ :: Lambda -> Int -> Int -> (Bool,Lambda)
recVar’ l’ i lim
| i > lim = (True,LamVar $ i – 1)
| otherwise = (False,l’)
recAp’ :: Lambda -> (Int -> (Bool,Lambda)) -> (Int -> (Bool,Lambda)) -> Int -> (Bool,Lambda)
recAp’ l’ m’ n’ lim = let
(mb,m”) = m’ lim
(nb,n”) = n’ lim
b = mb || nb
l” = if b then LamAp m” n” else l’
in (b,l”)
recAbs’ :: Lambda -> Char -> (Int -> (Bool,Lambda)) -> Int -> (Bool,Lambda)
recAbs’ l’ c’ e lim = let
(b,e’) = e $ lim + 1
l” = if b then LamAbs c’ e’ else l’
in (b,l”)
recShow’ :: Lambda -> (Lambda -> Maybe ShowS) -> Int -> (Bool,Lambda)
recShow’ l’ _ _ = (False,l’)
etaNormalise (LamAp m n) =
(\m’ f _ -> LamAp m’ n : f m’) — Pass the reduced expression forwards.
(\m’ -> LamAp m’ <$> etaNormalise n) — Reduce the right half of the expression.
(etaNormalise m) m
etaNormalise (LamAbs c e) = foldr branch [] $ etaNormalise e
— | Attempt to continue eta normalisation from the top each time.
branch :: Lambda -> [Lambda] -> [Lambda]
branch e’ ls = let
l = LamAbs c e’
ls’ = etaNormalise l
in l:if null ls’ then ls else ls’
etaNormalise _ = []

— | Produces a stream of eta then beta normalisation steps.
— >>> let true = boolTo
— >>> let false = boolTo
— >>> let not = ‘b’ `lam` term ‘b’ `ap` false `ap` true
— >>> let if’ = ‘b’ `lam` ‘t’ `lam` ‘f’ `lam` term ‘b’ `ap` term ‘t’ `ap` term ‘f’
— >>> normalise $ build $ not `ap` true
— [(\t_.t)(\_f.f)\t_.t,(\__f.f)\t_.t,\_f.f]
— >>> normalise $ build if’
— [\bt.bt,\b.b]
normalise :: Lambda -> [Lambda]
normalise l = foldr (\l’ f _ -> l’:f l’) etaNormalise (betaNormalise l) l

— | Get the beta normal form of a ‘Lambda’ term.
— This function will cause an infinite loop if the ‘Lambda’ does not terminate.
— betaNormal = last . betaNormalise
— >>> let true = boolTo
— >>> let false = boolTo
— >>> let not = ‘b’ `lam` term ‘b’ `ap` false `ap` true
— >>> betaNormal $ build $ not `ap` true
betaNormal :: Lambda -> Lambda
betaNormal (LamAp (LamAbs _ body) expr) = betaNormal
$ recLambda recVar recAp recAbs recShow body 0
— | Cache the fixed Lambdas.
fixed :: [Lambda]
fixed = fixDepth <$> [0..]
— | Fix the variables by offsetting them by the terms new depth.
fixDepth :: Int -> Lambda
fixDepth = recLambda recVar’ recAp’ recAbs’ recShow’ (betaNormal expr) 0
recVar’ l i depth’ offset
| i >= depth’ = LamVar $ i + offset
| otherwise = l
recAp’ _ = liftA2 (liftA2 LamAp)
recAbs’ _ c e depth’ = LamAbs c . e (depth’ + 1)
recShow’ l _ _ _ = l
recVar :: Lambda -> Int -> BetaLam
recVar l i arg
| i == arg = fixed !! arg
| i > arg = LamVar $ i – 1
| otherwise = l
recAp :: Lambda -> BetaLam -> BetaLam -> BetaLam
recAp _ = liftA2 LamAp
recAbs :: Lambda -> Char -> BetaLam -> BetaLam
recAbs _ c e arg = LamAbs c $ e $ arg + 1
recShow :: Lambda -> (Lambda -> Maybe ShowS) -> BetaLam
recShow l _ _ = l
betaNormal (LamAp (LamAp (LamShow _) _ _)) n) = betaNormal $ LamAp m n
betaNormal (LamAp _) n) = case betaNormal n of
(LamShow _) _) -> n’
n’ -> LamAp m n’
betaNormal (LamAp m n) = let
m’ = betaNormal m
n’ = betaNormal n
cont = case m’ of
(LamAbs _ _) -> betaNormal
(LamAp (LamShow _) (LamAbs _ _)) -> betaNormal
(LamShow _) -> betaNormal
_ -> id
in cont $ LamAp m’ n’
betaNormal (LamAbs c e) = LamAbs c $ betaNormal e
betaNormal l = l

type EtaNormal = Int -> Maybe Lambda

— | Get the eta normal form of a ‘Lambda’ term.
— etaNormal = last . etaNormalise
— >>> let if’ = ‘b’ `lam` ‘t’ `lam` ‘f’ `lam` term ‘b’ `ap` term ‘t’ `ap` term ‘f’
— >>> normalise $ build if’
— [\bt.bt,\b.b]
etaNormal :: Lambda -> Lambda
etaNormal _ (LamAp (LamShow _) (LamVar 0))) = l
etaNormal _ (LamAp expr (LamVar 0))) = maybe l etaNormal
$ recLambda recVar recAp recAbs recShow expr 0
recVar :: Lambda -> Int -> EtaNormal
recVar l’ i arg
| i == arg = Nothing
— Fix the indicies.
| otherwise = Just $ if i > arg then LamVar $ i – 1 else l’
recAp :: Lambda -> EtaNormal -> EtaNormal -> EtaNormal
recAp _ = liftA2 (liftA2 LamAp)
recAbs :: Lambda -> Char -> EtaNormal -> EtaNormal
recAbs _ c e arg = fmap (LamAbs c) $ e $ arg + 1
recShow :: Lambda -> (Lambda -> Maybe ShowS) -> EtaNormal
recShow l’ _ _ = Just l’
etaNormal l = recLambda recVar recAp recAbs recShow l
recVar l’ _ = l’
recAp _ = LamAp
recAbs _ c e = LamAbs c $ etaNormal e
recShow l’ _ = l’

— | Get the normal form of a ‘Lambda’ term.
— This function will cause an infinite loop if the ‘Lambda’ does not terminate.
— normal = etaNormal . betaNormal
— >>> let true = boolTo
— >>> let false = boolTo
— >>> let not = ‘b’ `lam` term ‘b’ `ap` false `ap` true
— >>> let if’ = ‘b’ `lam` ‘t’ `lam` ‘f’ `lam` term ‘b’ `ap` term ‘t’ `ap` term ‘f’
— >>> normal $ build $ if’ `ap` not `ap` true
normal :: Lambda -> Lambda
normal = etaNormal . betaNormal

— | A type used to recursively show a ‘Lambda’.
type ShowLamMaybe = Bool — Flag if this term is the head term of a chain of applications.
-> Bool — Flag if this term is the tail term of a chain of applications.
-> Int — Value indicating the depth of this term in an abstraction.
-> String — The context of unique variable names.
-> Maybe (Bool,ShowS) — A flag if the term is an abstraction and a show function of the term.

— | A show function which cannot error.
lamToShowS :: Lambda -> Maybe ShowS
lamToShowS l = snd <$> recLambda recVar recAp recAbs recShow l True True 0 []
recVar :: Lambda -> Int -> ShowLamMaybe
recVar _ i _ _ _ vars = fmap ((False,) . showChar) $ lookup i $ zip [0..] vars
recAp :: Lambda -> ShowLamMaybe -> ShowLamMaybe -> ShowLamMaybe
recAp (LamAp (LamShow f) n) _ n’ isHead isTail absDepth vars =
(n’ isHead isTail absDepth vars) — Show the remaining value as normal.
(Just . (False,))
$ f $ normal n
recAp _ m n isHead isTail _ vars = do
(_,m’) <- m True False 0 vars (_,n') <- n False isTail 0 vars let ss = m' . n' pure (False,if isHead then ss else open . ss . close) recAbs :: Lambda -> Char -> ShowLamMaybe -> ShowLamMaybe
recAbs _ c e _ isTail absDepth vars = do
— Find a free variable name.
let altC = find (`notElem`vars) $ [‘a’..’z’] ++ [‘A’..’Z’]
— A unique variable name.
c’ <- if c /= '_' && c `elem` vars then altC else Just c -- The context for the body. let vars' = c':vars (isAbs,e') <- e True True (absDepth + 1) vars' -- | Shows all of the immediate context along with the body. (flip $ (.) . showChar) (showChar c') (take absDepth vars) . dot . e' -- | Shows the body, optionally finalising the chain of abstractions. body = if isAbs then e' else altBody -- | Shows the body, optionally beginning the chain of abstractions. ss = if absDepth /= 0 then body else lambda . body pure (True,if isTail then ss else open . ss . close) recShow :: Lambda -> (Lambda -> Maybe ShowS) -> ShowLamMaybe
recShow _ _ _ _ _ _ = Nothing
[open,close,lambda,dot] = showChar <$> “()\\.” :: [ShowS]

— | A show function which cannot error.
lamToString :: Lambda -> Maybe String
lamToString = fmap ($””) <$> lamToShowS

— | Recognises a normalised church bool.
— prop> Just b == lamToBool (build $ boolToLam b)
lamToBool :: Lambda -> Maybe Bool
lamToBool = go . normal
go (LamAp (LamShow _) l) = go l
go (LamAbs _ (LamAbs _ (LamVar i)))
| i <= 1 = Just $ i == 1 | otherwise = Nothing go _ = Nothing -- | Recognises a normalised church numeral. 程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com