程序代写代做代考 kernel Lab 09

Lab 09
1. LDA: pset5
2. SVM: kernel trick

Linear Discriminant Analysis Problem set 5 example

Linear Discriminant Analysis
from Lectures

Linear Discriminant Analysis

Linear Discriminant Analysis
Slide Credit: Jia Li http://www.stat.psu.edu/∼jiali

Linear Discriminant Analysis
https://en.wikipedia.org/wiki/Pooled_variance
Slide Credit: Jia Li http://www.stat.psu.edu/∼jiali

Linear Discriminant Analysis
scikit-learn.org

Support Vector Machine
Key points:
• Difference between logistic regression and SVMs • Maximum margin principle
• Target function for SVMs
• Slack variables for misclassified points
• Kernel trick allows non-linear generalizations
slide credit: R. Urtasun

Support Vector Machine

https://cs.stanford.edu/people/karpathy/svmjs/demo/
CVXOPT User’s Guide
slide credit: R. Urtasun

slide credit: R. Urtasun

Kernel Trick

Kernel Trick

Kernel Trick

Kernel Trick
K – Gram matrix X – Design matrix

Kernel Trick
K – Gram matrix X – Design matrix

Mercer’s Theorem

Bishop, p. 296

Example Kernels

LDA – linearity
from Lectures

Unequal Priors
from Lectures

HW5 hints