程序代写代做代考 Environments Closures Refinement

Environments Closures Refinement
Environments
Dr. Liam O’Connor
University of Edinburgh LFCS UNSW, Term 3 2020
1

Environments
Closures
Refinement
Where we’re at
We refined the abstract M-Machine to a C-Machine, with explicit stacks: s≻e s≺v
Function application is still executed via substitution:
(Apply⟨⟨f.x.e⟩⟩􏰈)◃s≺v 􏰀→C s≻e[x:=v,f :=(Fun(f.x.e))]
We’re going to extend our C-Machine to replace substitutions with an environment, giving us a new E-Machine
2

Environments Closures Refinement
Environments
Definition
An environment is a context containing equality assumptions about variables. It can be viewed like a state that maps variables to their values, except that a variable’s value does not change over time.
η Env •Env x=v,ηEnv
We write η(x) to indicate the leftmost value corresponding to x in η. Let’s change our machine states to include an environment:
s|η≻e s|η≺v
3

Environments Closures Refinement
First Attempt
First, we’ll add a rule for consulting the environment if we encounter a free variable:
s | η ≻ x 􏰀→E s | η ≺ η(x) Then, we just need to handle function application.
4

Environments Closures Refinement
First Attempt
First, we’ll add a rule for consulting the environment if we encounter a free variable:
s | η ≻ x 􏰀→E s | η ≺ η(x) Then, we just need to handle function application.
One broken attempt:
(Apply⟨⟨f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E s|(x=v,f =⟨⟨f.x.e⟩⟩,η)≻e
5

Environments Closures Refinement
First Attempt
First, we’ll add a rule for consulting the environment if we encounter a free variable:
s | η ≻ x 􏰀→E s | η ≺ η(x) Then, we just need to handle function application.
One broken attempt:
(Apply⟨⟨f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E s|(x=v,f =⟨⟨f.x.e⟩⟩,η)≻e We don’t know when to remove the variables again!
6

Environments Closures Refinement
Second Attempt
We will extend our stacks to allow us to save the old environment to it. s Stack η Env
η ◃ s Stack
Calling a function, we save the environment to the stack.
(Apply⟨⟨f.x.e⟩⟩􏰈)◃s |η≺v 􏰀→E
7

Environments Closures Refinement
Second Attempt
We will extend our stacks to allow us to save the old environment to it. s Stack η Env
η ◃ s Stack
Calling a function, we save the environment to the stack.
(Apply⟨⟨f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E η◃s|(x=v,f =⟨⟨f.x.e⟩⟩,η)≻e
8

Environments Closures Refinement
Second Attempt
We will extend our stacks to allow us to save the old environment to it. s Stack η Env
η ◃ s Stack
Calling a function, we save the environment to the stack.
(Apply⟨⟨f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E η◃s|(x=v,f =⟨⟨f.x.e⟩⟩,η)≻e When the function returns, we restore the old environment, clearing out the new
bindings:
η◃s|η′≺v 􏰀→E s|η≺v
9

Environments Closures Refinement
Simple Example
◦ | • ≻ (Ap(Fun(f.x.(Plusx (N1))))(N3))
10

Environments
Closures Refinement
◦ (Ap 􏰈 (N 3))◃◦
| • | •
Simple Example
≻ (Ap(Fun(f.x.(Plusx (N1))))(N3)) ≻ (Fun (f.x. (Plus x (N 1))))
11

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦
| • | • | •
Simple Example
≻ (Ap(Fun(f.x.(Plusx (N1))))(N3)) ≻ (Fun (f.x. (Plus x (N 1))))
≺ ⟨⟨f.x. (Plus x (N 1))⟩⟩
12

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦
| • | • | • | •
Simple Example
≻ (Ap(Fun(f.x.(Plusx (N1))))(N3)) ≻ (Fun (f.x. (Plus x (N 1))))
≺ ⟨⟨f.x. (Plus x (N 1))⟩⟩
≻ (N 3)
13

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦
| • | • | • | • | •
Simple Example
≻ (Ap(Fun(f.x.(Plusx(N1))))(N3)) ≻ (Fun (f .x . (Plus x (N 1))))
≺ ⟨⟨f .x. (Plus x (N 1))⟩⟩
≻ (N 3)
≺ 3
14

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦
| • ≻ | • ≻ | • ≺ | • ≻ | • ≺ | x=3,f=⟨⟨···⟩⟩,• ≻
(Ap(Fun(f.x.(Plusx(N1))))(N3)) (Fun (f .x . (Plus x (N 1))))
⟨⟨f .x. (Plus x (N 1))⟩⟩
(N 3)
3 (Plusx(N1))
Simple Example
15

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦
| • ≻ | • ≻ | • ≺ | • ≻ | • ≺ | x=3,f=⟨⟨···⟩⟩,• ≻ | x=3,f =⟨⟨···⟩⟩,• ≻
(Ap(Fun(f.x.(Plusx(N1))))(N3)) (Fun (f .x . (Plus x (N 1))))
⟨⟨f .x. (Plus x (N 1))⟩⟩
(N 3)
3 (Plusx(N1)) x
Simple Example
16

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦ (Plus􏰈(N1))◃•◃◦
| • ≻ | • ≻ | • ≺ | • ≻ | • ≺ | x=3,f=⟨⟨···⟩⟩,• ≻ | x=3,f =⟨⟨···⟩⟩,• ≻ | x=3,f =⟨⟨···⟩⟩,• ≺
(Ap(Fun(f.x.(Plusx(N1))))(N3)) (Fun (f .x . (Plus x (N 1))))
⟨⟨f .x. (Plus x (N 1))⟩⟩
(N 3)
3 (Plusx(N1)) x
3
Simple Example
17

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦ (Plus􏰈(N1))◃•◃◦ (Plus3􏰈)◃•◃◦
| • ≻ | • ≻ | • ≺ | • ≻ | • ≺ | x=3,f=⟨⟨···⟩⟩,• ≻ | x=3,f =⟨⟨···⟩⟩,• ≻ | x=3,f =⟨⟨···⟩⟩,• ≺ | x=3,f =⟨⟨···⟩⟩,• ≻
(Ap(Fun(f.x.(Plusx(N1))))(N3)) (Fun (f .x . (Plus x (N 1))))
⟨⟨f .x. (Plus x (N 1))⟩⟩
(N 3)
3 (Plusx(N1)) x
3
(N1)
Simple Example
18

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦ (Plus􏰈(N1))◃•◃◦ (Plus3􏰈)◃•◃◦ (Plus3􏰈)◃•◃◦
| •
| •
| •
| •
| •
| x=3,f=⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,•
≻ (Ap(Fun(f.x.(Plusx(N1))))(N3)) ≻ (Fun (f .x . (Plus x (N 1))))
≺ ⟨⟨f .x. (Plus x (N 1))⟩⟩
≻ (N 3)
≺ 3
≻ (Plusx(N1)) ≻ x
≺ 3
≻ (N1)
≺ 1
Simple Example
19

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦ (Plus􏰈(N1))◃•◃◦ (Plus3􏰈)◃•◃◦ (Plus3􏰈)◃•◃◦ •◃◦
| •
| •
| •
| •
| •
| x=3,f=⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f=⟨⟨···⟩⟩,•
≻ (Ap(Fun(f.x.(Plusx(N1))))(N3)) ≻ (Fun (f .x . (Plus x (N 1))))
≺ ⟨⟨f .x. (Plus x (N 1))⟩⟩
≻ (N 3)
≺ 3
≻ (Plusx(N1)) ≻ x
≺ 3
≻ (N1)
≺ 1
≺ 4
Simple Example
20

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦ (Plus􏰈(N1))◃•◃◦ (Plus3􏰈)◃•◃◦ (Plus3􏰈)◃•◃◦ •◃◦
| •
| •
| •
| •
| •
| x=3,f=⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f=⟨⟨···⟩⟩,•
≻ (Ap(Fun(f.x.(Plusx(N1))))(N3)) ≻ (Fun (f .x . (Plus x (N 1))))
≺ ⟨⟨f .x. (Plus x (N 1))⟩⟩
≻ (N 3)
≺ 3
≻ (Plusx(N1)) ≻ x
≺ 3
≻ (N1)
≺ 1
≺ 4
◦|• ≺4
Simple Example
21

Environments
Closures
Refinement
◦ (Ap 􏰈 (N 3))◃◦ (Ap 􏰈 (N 3))◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ (Ap ⟨⟨···⟩⟩ 􏰈)◃◦ •◃◦ (Plus􏰈(N1))◃•◃◦ (Plus􏰈(N1))◃•◃◦ (Plus3􏰈)◃•◃◦ (Plus3􏰈)◃•◃◦ •◃◦
| •
| •
| •
| •
| •
| x=3,f=⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f =⟨⟨···⟩⟩,• | x=3,f=⟨⟨···⟩⟩,•
≻ (Ap(Fun(f.x.(Plusx(N1))))(N3)) ≻ (Fun (f .x . (Plus x (N 1))))
≺ ⟨⟨f .x. (Plus x (N 1))⟩⟩
≻ (N 3)
≺ 3
≻ (Plusx(N1)) ≻ x
≺ 3
≻ (N1)
≺ 1
≺ 4
Seems
◦|• ≺4
to work for basic examples, but is there some way to break it?
Simple Example
22

Environments Closures Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
23

Environments Closures Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4)) 􏰀→E (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
24

Environments
Closures
Refinement
􏰀→E 􏰀→E
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
25

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) 􏰀→E (Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x)))) 􏰀→E (Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨f .x. (Fun (g.y. x))⟩⟩
26

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) 􏰀→E (Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x)))) 􏰀→E (Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨f .x. (Fun (g.y. x))⟩⟩
􏰀→E (Ap ⟨⟨f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
27

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3)
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3
28

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3)
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x))
29

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3)
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x))
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨g.y.x⟩⟩
30

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3)
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x))
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨g.y.x⟩⟩
􏰀→E (Ap􏰈(N4))◃◦|•≺⟨⟨g.y.x⟩⟩
31

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3)
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x))
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨g.y.x⟩⟩
􏰀→E (Ap􏰈(N4))◃◦|•≺⟨⟨g.y.x⟩⟩
􏰀→E (Ap⟨⟨g.y.x⟩⟩􏰈)◃◦|•≻(N4)
32

Environments
Closures
Refinement
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
􏰀→E (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) 􏰀→E (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3)
􏰀→E (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x))
􏰀→E •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨g.y.x⟩⟩
􏰀→E (Ap􏰈(N4))◃◦|•≺⟨⟨g.y.x⟩⟩
􏰀→E (Ap⟨⟨g.y.x⟩⟩􏰈)◃◦|•≻(N4)
􏰀→E (Ap⟨⟨g.y.x⟩⟩􏰈)◃◦|•≺4
33

Environments
Closures
Refinement
􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀→E 􏰀 →E
Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4)) (Ap􏰈(N4))◃◦|•≻(Ap(Fun(f.x.(Fun(g.y.x))))(N3)) (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≻(Fun(f.x.(Fun(g.y.x)))) (Ap􏰈(N3))◃(Ap􏰈(N4))◃◦|•≺⟨⟨f.x.(Fun(g.y.x))⟩⟩ (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≻(N3) (Ap⟨⟨f···⟩⟩􏰈)◃(Ap􏰈(N4))◃◦|•≺3 •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x)) •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨g.y.x⟩⟩ (Ap􏰈(N4))◃◦|•≺⟨⟨g.y.x⟩⟩
(Ap⟨⟨g.y.x⟩⟩􏰈)◃◦|•≻(N4) (Ap⟨⟨g.y.x⟩⟩􏰈)◃◦|•≺4 •◃◦|y=4,g=⟨⟨g.y.x⟩⟩,•≻x Oh no! We’re stuck!
34

Environments Closures Refinement
Something went wrong!
Returning functions as a result means that the function’s body expression escapes the scope of bound variables that existed where it is defined:
(letx=3inrecfunf y=x+y)5
The function value ⟨⟨f .y . x + y ⟩⟩, when it is applied, does not “remember” that x = 3
when the function was defined.
Solution: Store the environment inside the function value!
s |η≻(Recfun(f.x.e)) 􏰀→E s |η≺⟨⟨η, f.x.e⟩⟩ This type of function value is called a closure.
35

Environments Closures Refinement
(Apply⟨⟨η′,f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E η◃s|(x=v,f =⟨⟨f.x.e⟩⟩,η′)≻e

Environments Closures Refinement
(Apply⟨⟨η′,f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E η◃s|(x=v,f =⟨⟨f.x.e⟩⟩,η′)≻e
Store the old env. in the stack

Environments Closures Refinement
(Apply⟨⟨η′,f.x.e⟩⟩􏰈)◃s|η≺v 􏰀→E η◃s|(x=v,f =⟨⟨f.x.e⟩⟩,η′)≻e
Store the old env. in the stack
Retrieve the new env. from the closure
38

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
39

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x)))) (Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩ (Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3
40

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x)))) (Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩ (Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3 •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x))
41

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3
•◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x)) •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩
42

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3
•◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x)) •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩ (Ap􏰈(N4))◃◦|•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≻(N4)
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≺4
43

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3
•◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x)) •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩ (Ap􏰈(N4))◃◦|•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≻(N4)
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≺4 •◃◦|y=4,g=⟨⟨g.y.x⟩⟩,x=3,f =···,•≻x
44

Environments Closures Refinement
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3
•◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x)) •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩ (Ap􏰈(N4))◃◦|•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≻(N4)
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≺4 •◃◦|y=4,g=⟨⟨g.y.x⟩⟩,x=3,f =···,•≻x •◃◦|y=4,g=⟨⟨g.y.x⟩⟩,x=3,f =···,•≺3
45

Environments Closures Refinement
46
Our Example
◦ | • ≻ (Ap (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3)) (N 4))
(Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Ap (Fun (f .x. (Fun (g.y. x)))) (N 3))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (Fun (f .x. (Fun (g.y. x))))
(Ap 􏰈 (N 3)) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x ))⟩⟩
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≻ (N 3)
(Ap ⟨⟨•, f · · ·⟩⟩ 􏰈) ◃ (Ap 􏰈 (N 4)) ◃ ◦ | • ≺ 3
•◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≻(Fun(g.y.x)) •◃(Ap􏰈(N4))◃◦|x=3,f =⟨⟨f···⟩⟩,•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩ (Ap􏰈(N4))◃◦|•≺⟨⟨(x=3,f =···,•),g.y.x⟩⟩
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≻(N4)
(Ap⟨⟨(x=3,f =···,•),g.y.x⟩⟩􏰈)◃◦|•≺4 •◃◦|y=4,g=⟨⟨g.y.x⟩⟩,x=3,f =···,•≻x •◃◦|y=4,g=⟨⟨g.y.x⟩⟩,x=3,f =···,•≺3
◦|•≺3

Environments
Closures Refinement
Refinement
We already sketched the proof that shows that each C-machine execution has a corresponding M-machine execution (refinement).
This means that any functional correctness (not security or cost) property we prove about all M-machine executions of a program apply just as well to any C-machine executions of the same program.
Now we want to prove that each E-machine execution has a corresponding C-machine execution (and therefore a M-machine execution).
47

Environments Closures Refinement
Ingredients for Refinement
Once again, we want the same ingredients to prove a simulation proof that we did in the previous refinement. That is, we must define an abstraction function A that converts E-machine states to C-machine states, such that:
Each initial state in the E-machine is mapped to an initial state in the C-Machine. Each final state in the E-machine is mapped to a final state in the C-Machine.
For each transition from one state to another in the E-machine, either there exists a corresponding transition in the C-Machine, or the two states map to the same C-machine state.
48

Environments Closures Refinement
How to define A?
49

Environments Closures Refinement
How to define A?
Our abstraction function A applies the environment η as a substitution to the current expression, and to the stack, starting at the left.
50

Environments
Closures
Refinement
How to define A?
Our abstraction function A applies the environment η as a substitution to the
current expression, and to the stack, starting at the left.
If any environment is encountered in the stack, switch to substituting with that environment instead.
51

Environments
Closures
Refinement
How to define A?
Our abstraction function A applies the environment η as a substitution to the
current expression, and to the stack, starting at the left.
If any environment is encountered in the stack, switch to substituting with that environment instead.
E-Machine values are converted to C-Machine values merely by applying the environment inside closures as a substitution to the expression inside the closure.
52

Environments
Closures
Refinement
How to define A?
Our abstraction function A applies the environment η as a substitution to the
current expression, and to the stack, starting at the left.
If any environment is encountered in the stack, switch to substituting with that environment instead.
E-Machine values are converted to C-Machine values merely by applying the environment inside closures as a substitution to the expression inside the closure.
With such a function definition, it is trivial to prove that each E-Machine transition has a corresponding transition in the C-Machine, as it is 1:1.
Except!
There is one rule which is not 1:1. Which one?
53