程序代写代做代考 compiler interpreter C data structure concurrency kernel Carnegie Mellon

Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
1
14

513
18

613

Carnegie Mellon
Exceptional Control Flow: Signals and Nonlocal Jumps
15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems 20th Lecture, November 5, 2020
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon
Review from last lecture
 Exceptions
▪ Events that require nonstandard control flow
▪ Generated externally (interrupts) or internally (traps and faults)
 Processes
▪ At any given time, system has multiple active processes
▪ Only one can execute at a time on any single core
▪ Each process appears to have total control of
processor + private memory space
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon
Review (cont.)
 Spawning processes ▪ Call fork
▪ One call, two returns
 Process completion ▪ Call exit
▪ One call, no return
 Reaping and waiting for processes
▪ Call wait or waitpid
 Loading and running programs ▪ Call execve (or variant)
▪ One call, (normally) no return
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon
execve: Loading and Running Programs
 int execve(char *filename, char *argv[], char *envp[])
 Loads and runs in the current process: ▪Executable filefilename
▪ Can be object file or script file beginning with #!interpreter (e.g., #!/bin/bash)
▪ …with argument list argv
▪ By convention argv[0]==filename
▪ …and environment variable list envp
▪ “name=value” strings (e.g., USER=droh) ▪ getenv, putenv, printenv
 Overwrites code, data, and stack
▪ Retains PID, open files and signal context
 Called once and never returns
▪ …except if there is an error
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon
ECF Exists at All Levels of a System  Exceptions
▪ Hardware and operating system kernel software  Process Context Switch
▪ Hardware timer and kernel software  Signals
▪ Kernel software and application software  Nonlocal jumps
▪ Application code
Previous Lecture
This Lecture
Textbook and supplemental slides
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon
Today  Shells
 Signals
CSAPP 8.4.6 CSAPP 8.5
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
10

Carnegie Mellon
Linux Process Hierarchy
Daemon e.g. httpd
Child
Grandchild
[0] init [1]
Login shell … Child
Grandchild
Login shell Child
Note: you can view the hierarchy using the Linux pstree command
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
11

Carnegie Mellon
Shell Programs
 A shell is an application program that runs programs on behalf
of the user.
▪ sh
▪ csh/tcsh ▪ bash
Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977) BSD Unix C shell
 Simple shell
▪ Described in the textbook, starting at p. 753 ▪ Implementation of a very elementary shell ▪ Purpose
“Bourne-Again” Shell
(default Linux shell)
▪ Understand what happens when you type commands
▪ Understand use and operation of process control operations
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon
Simple Shell Example
linux> ./shellex
> /bin/ls -l csapp.c
-rw-r–r– 1 bryant users 23053 Jun 15 2015 csapp.c > /bin/ps
PID TTY
31542 pts/2
32017 pts/2
32019 pts/2
> /bin/sleep 10 & 32031 /bin/sleep 10 & > /bin/ps
PID TTY
31542 pts/2
32024 pts/2
32030 pts/2
32031 pts/2
32033 pts/2
> quit
TIME CMD
00:00:01 tcsh
00:00:00 emacs
00:00:00 shellex
00:00:00 sleep
00:00:00 ps
Sleep is running in background
TIME CMD
00:00:01 tcsh
Must give full pathnames for programs
00:00:00 shellex
00:00:00 ps
Run program in background
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon
Simple Shell Implementation  Basic loop
▪ Read line from command line
▪ Execute the requested operation
▪ Built-in command (only one implemented is quit) ▪ Load and execute program from file
int main(int argc, char** argv)
{
char cmdline[MAXLINE]; /* command line */
while (1) {
/* read */
printf(“> “);
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0);
/* evaluate */
eval(cmdline);
}

shellex.c
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
14
Execution is a sequence of read/evaluate steps

Carnegie Mellon
Simple Shell eval Function
void eval(char *cmdline)
{
char *argv[MAXARGS]; /* Argument list execve() */
}
shellex.c
char buf[MAXLINE];
int bg;
pid_t pid;
/* Holds modified command line */
/* Should the job run in bg or fg? */
/* Process id */
strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)
return;
if (!builtin_c
if ((pid = */
if (ex pr
ex }
}
/* Parent waits for foreground job to terminate */
if (!bg) {
int status;
if (waitpid(pid, &status, 0) < 0) } } else unix_error("waitfg: waitpid error"); printf("%d %s", pid, cmdline); return; Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15 /* Ignore empty lines */ parselinewill parse ‘buf’ into ommand(argv)) { ‘argv’ and return whether or not Fork()) == 0) { /* Child runs user job ecve(argv[0], argv, environ) < 0) { intf("%s: Command not found.\n", argv[0]); input line ended in ‘&’ it(0); Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) } shellex.c return; /* Ignore empty lines */ Ignore empty lines. if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } /* Parent waits for foreground job to terminate */ if (!bg) { int status; if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); } else printf("%d %s", pid, cmdline); return; } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16 Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ } shellex.c char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return; /* Ignore empty lines */ if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } If it is a ‘built in’ command, then handle it here in this program. Otherwise fork/exec the program /* Parent waits for foreground job to terminate */ if (!bg) { int status; } else if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); printf("%d %s", pid, cmdline); return; } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17 specified in argv[0] Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return; /* Ignore empty lines */ if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } Create child } shellex.c /* Parent waits for foreground job to terminate */ if (!bg) { int status; if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); } else printf("%d %s", pid, cmdline); return; } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18 Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return; /* Ignore empty lines */ if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } /* Parent waits for foreground job to terminate */ if (!bg) { int status; if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); else } return; } shellex.c } Start argv[0]. Remember execve only returns on printf("%d %s", pid, cmdline); error. Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19 Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return; /* Ignore empty lines */ if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } /* Parent waits for foreground job to terminate */ if (!bg) { int status; if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); } else return; If running child in } printf("%d %s", pid, cmdline); foreground, wait until it is done. Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition } shellex.c 20 Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return; /* Ignore empty lines */ if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } /* Parent waits for foreground job to terminate */ if (!bg) { int status; if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); } else{ printf("%d %s", pid, cmdline); } } return; } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition shellex.c 21 If running child in background, print pid and continue doing other stuff. Carnegie Mellon Simple Shell eval Function void eval(char *cmdline) { char *argv[MAXARGS]; /* Argument list execve() */ char buf[MAXLINE]; int bg; pid_t pid; /* Holds modified command line */ /* Should the job run in bg or fg? */ /* Process id */ strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return; /* Ignore empty lines */ if (!builtin_command(argv)) { if ((pid = Fork()) == 0) { /* Child runs user job */ if (execve(argv[0], argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); } } /* Parent waits for foreground job to terminate */ if (!bg) { int status; if (waitpid(pid, &status, 0) < 0) unix_error("waitfg: waitpid error"); } else printf("%d %s", pid, cmdline); return; } shellex.c } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22 Oops. There is a problem with this code. Carnegie Mellon Problem with Simple Shell Example  Shell designed to run indefinitely ▪ Should not accumulate unneeded resources ▪ Memory ▪ Child processes ▪ File descriptors  Our example shell correctly waits for and reaps foreground jobs  But what about background jobs? ▪ Will become zombies when they terminate ▪ Will never be reaped because shell (typically) will not terminate ▪ Will create a memory leak that could run the kernel out of memory Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23 Carnegie Mellon ECF to the Rescue!  Solution: Exceptional control flow ▪ The kernel will interrupt regular processing to alert us when a background process completes ▪ In Unix, the alert mechanism is called a signal Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24 Carnegie Mellon Today  Shells  Signals Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25 Carnegie Mellon (partial) Taxonomy Handled in kernel Handled in user process ECF Asynchronous Synchronous Faults Interrupts Signals Traps Aborts Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26 Carnegie Mellon Signals  A signal is a small message that notifies a process that an event of some type has occurred in the system ▪ Akin to exceptions and interrupts ▪ Sent from the kernel (sometimes at the request of another process) to a process ▪ Signal type is identified by small integer ID’s (1-30) ▪ Only information in a signal is its ID and the fact that it arrived ID Name Default Action Corresponding Event 2 SIGINT 11 SIGSEGV 17 SIGCHLD Terminate Terminate Ignore User typed ctrl-c Segmentation violation Child stopped or terminated 9 SIGKILL Terminate Kill program (cannot override or ignore) 14 SIGALRM Terminate Timer signal Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27 Carnegie Mellon Signal Concepts: Sending a Signal  Kernel sends (delivers) a signal to a destination process by updating some state in the context of the destination process  Kernel sends a signal for one of the following reasons: ▪ Kernel has detected a system event such as divide-by-zero (SIGFPE) or the termination of a child process (SIGCHLD) ▪ Another process has invoked the kill system call to explicitly request the kernel to send a signal to the destination process Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28 Carnegie Mellon Signal Concepts: Sending a Signal User level Process A Process C Process B kernel Pending for A Pending for B Pending for C Blocked for A Blocked for B Blocked for C Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29 Carnegie Mellon Signal Concepts: Sending a Signal User level Process A Process C Process B kernel Pending for A Pending for B Pending for C Blocked for A Blocked for B Blocked for C Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30 Carnegie Mellon Signal Concepts: Sending a Signal User level Process A Process C Process B kernel Pending for A Pending for B 1 Pending for C Blocked for A Blocked for B Blocked for C Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31 Carnegie Mellon Signal Concepts: Sending a Signal User level Process A Process C Process B kernel Pending for A Pending for B 1 Pending for C Blocked for A Blocked for B Blocked for C Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32 Carnegie Mellon Signal Concepts: Sending a Signal User level Process A Process C Process B kernel Pending for A Pending for B 0 Pending for C Blocked for A Blocked for B Blocked for C Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33 Carnegie Mellon Signal Concepts: Receiving a Signal  A destination process receives a signal when it is forced by the kernel to react in some way to the delivery of the signal  Some possible ways to react: ▪ Ignore the signal (do nothing) ▪ Terminate the process (with optional core dump) ▪ Catch the signal by executing a user-level function called signal handler ▪ Akin to a hardware exception handler being called in response to an asynchronous interrupt: (1) Signal received by process Icurr Inext (2) Control passes to signal handler (4) Signal handler returns to next instruction (3) Signal handler runs Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34 Carnegie Mellon Signal Concepts: Pending and Blocked Signals  A signal is pending if sent but not yet received ▪ There can be at most one pending signal of any particular type ▪ Important: Signals are not queued ▪ If a process has a pending signal of type k, then subsequent signals of type k that are sent to that process are discarded  A process can block the receipt of certain signals ▪ Blocked signals can be delivered, but will not be received until the signal is unblocked  A pending signal is received at most once Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35 Carnegie Mellon Signal Concepts: Pending/Blocked Bits  Kernel maintains pending and blocked bit vectors in the context of each process ▪ pending: represents the set of pending signals ▪ Kernel sets bit k in pending when a signal of type k is delivered ▪ Kernel clears bit k in pending when a signal of type k is received ▪ blocked: represents the set of blocked signals ▪ Can be set and cleared by using the sigprocmask function ▪ Also referred to as the signal mask. Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36 Carnegie Mellon Signal Concepts: Sending a Signal User level Process A Process C Process B kernel Pending for A Pending for B 1 Pending for C Blocked for A Blocked for B Blocked for C Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37 Carnegie Mellon Sending Signals: Process Groups  Every process belongs to exactly one process group pid=10 pgid=10 Shell Fore- pgid=20 ground job pid=20 Back- ground job #1 Background process group 32 pid=32 pgid=32 Back- ground job #2 Background process group 40 pid=40 pgid=40 Child pid=21 pgid=20 Child pid=22 pgid=20 Foreground process group 20 getpgrp() Return process group of current process setpgid() Change process group of a process (see text for details) Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38 Carnegie Mellon Sending Signals with /bin/kill Program  /bin/kill program sends arbitrary signal to a process or process group  Examples ▪ /bin/kill –9 24818 Send SIGKILL to process 24818 ▪ /bin/kill –9 –24817 Send SIGKILL to every process in process group 24817 linux> ./forks 16
Child1: pid=24818 pgrp=24817 Child2: pid=24819 pgrp=24817
linux> ps
PID TTY
24788 pts/2
24820 pts/2
linux> /bin/kill -9 -24817
linux> ps
TIME CMD
00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
39
PID TTY 24788 pts/2 24823 pts/2 linux>
TIME CMD
00:00:00 tcsh
00:00:00 ps
00:00:00 ps

Carnegie Mellon
Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every job in the foreground process group.
▪ SIGINT – default action is to terminate each process
▪ SIGTSTP – default action is to stop (suspend) each process
pid=10 pgid=10
Shell
Fore- pgid=20 ground
job
pid=20
Back- ground job #1
Background process group 32
pid=32
pgid=32
Back- ground job #2
Background process group 40
pid=40
pgid=40
Child
pid=21
pgid=20
Child
pid=22
pgid=20
Foreground
process group 20
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon
Example of ctrl-c and ctrl-z
STAT (process state) Legend:
First letter:
S: sleeping T: stopped R: running
Second letter:
s: session leader
+: foreground proc group
See “man ps” for more details
bluefish> ./forks 17
Child: pid=28108 pgrp=28107 Parent: pid=28107 pgrp=28107
Suspended
bluefish> ps w
PID TTY STAT 27699 pts/8 Ss 28107 pts/8 T 28108 pts/8 T 28109 pts/8 R+ bluefish> fg ./forks 17

bluefish> ps w
PID TTY STAT
27699 pts/8 Ss
28110 pts/8 R+
TIME COMMAND 0:00 -tcsh 0:01 ./forks 17 0:01 ./forks 17 0:00 ps w
TIME COMMAND
0:00 -tcsh
0:00 ps w
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
41

Carnegie Mellon
Receiving Signals
 Suppose kernel is returning from an exception handler
and is ready to pass control to process p Process q Process p
Time
context switch
context switch
user code
kernel code
user code
kernel code
user code
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
42

Carnegie Mellon
Receiving Signals
 Suppose kernel is returning from an exception handler
and is ready to pass control to process p
 Kernel computes pnb = pending & ~blocked
▪ The set of pending nonblocked signals for process p
 If (pnb == 0)
▪ Pass control to next instruction in the logical flow for p
 Else
▪ Choose least nonzero bit k in pnb and force process p to receive signal k
▪ The receipt of the signal triggers some action by p
▪ Repeat for all nonzero k in pnb
▪ Pass control to next instruction in logical flow for p
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon
Default Actions
 Each signal type has a predefined default action, which is one of:
▪ The process terminates
▪ The process stops until restarted by a SIGCONT signal ▪ The process ignores the signal
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon
Quiz Time!
Check out:
https://canvas.cmu.edu/courses/17808
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon
Installing Signal Handlers
 The signal function modifies the default action associated with the receipt of signal signum:
▪ handler_t *signal(int signum, handler_t *handler)
 Different values for handler:
▪ SIG_IGN: ignore signals of type signum
▪ SIG_DFL: revert to the default action on receipt of signals of type signum ▪ Otherwise, handler is the address of a user-level signal handler
▪ Called when process receives signal of type signum
▪ Referred to as “installing” the handler
▪ Executing handler is called “catching” or “handling” the signal
▪ When the handler executes its return statement, control passes back to instruction in the control flow of the process that was interrupted by receipt of the signal
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon
Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */ {
printf(“So you think you can stop the bomb with ctrl-c, do you?\n”); sleep(2);
printf(“Well…”);
fflush(stdout);
sleep(1);
printf(“OK. :-)\n”);
exit(0);
}
int main(int argc, char** argv)
{
/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR) unix_error(“signal error”);
/* Wait for the receipt of a signal */
pause();
return 0; }
sigint.c
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon
Signals Handlers as Concurrent Flows
 A signal handler is a separate logical flow (not process) that runs concurrently with the main program
 But, this flow exists only until returns to main program
Process A Process A
while (1) handler(){ ;…
}
Process B
Time
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
48

Carnegie Mellon
Another View of Signal Handlers as Concurrent Flows
Signal delivered to process A
Signal received by process A
context switch
context switch
Process A
Process B
Icurr
user code (main)
kernel code
user code (main)
kernel code
user code (handler)
kernel code
Inext
user code (main)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
49

Carnegie Mellon
Nested Signal Handlers
 Handlers can be interrupted by other handlers
Main program Handler S Handler T (2) Control passes
(1) Program catches signal s
(7) Main program resumes
Icurr Inext
to handler S
(3) Program catches signal t
(6) Handler S returns to main program
(4) Control passes to handler T
(5) Handler T returns to handler S
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
50

Carnegie Mellon
Blocking and Unblocking Signals
 Implicit blocking mechanism
▪ Kernel blocks any pending signals of type currently being handled. ▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT
 Explicit blocking and unblocking mechanism ▪ sigprocmask function
 Supporting functions
▪ sigemptyset – Create empty set
▪ sigfillset – Add every signal number to set ▪ sigaddset – Add signal number to set
▪ sigdelset – Delete signal number from set
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon
Temporarily Blocking Signals
sigset_t mask, prev_mask;
Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);
/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);
/* Code region that will not be interrupted by SIGINT */
/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon
Safe Signal Handling
 Handlers are tricky because they are concurrent with main program and share the same global data structures.
▪ Shared data structures can become corrupted.
 We’ll explore concurrency issues later in the term.
 For now here are some guidelines to help you avoid trouble.
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon
Guidelines for Writing Safe Handlers
 G0: Keep your handlers as simple as possible
▪ e.g., Set a global flag and return
 G1: Call only async-signal-safe functions in your handlers
▪ printf, sprintf, malloc, and exit are not safe!
 G2: Save and restore errno on entry and exit
▪ So that other handlers don’t overwrite your value of errno
 G3: Protect accesses to shared data structures by temporarily blocking all signals.
▪ To prevent possible corruption
 G4: Declare global variables as volatile
▪ To prevent compiler from storing them in a register
 G5: Declare global flags as volatile sig_atomic_t
▪ flag: variable that is only read or written (e.g. flag = 1, not flag++)
▪ Flag declared this way does not need to be protected like other globals
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon
Async-Signal-Safety
 Function is async-signal-safe if either reentrant (e.g., all variables stored on stack frame, CS:APP3e 12.7.2) or non- interruptible by signals.
 Posix guarantees 117 functions to be async-signal-safe ▪ Source: “man 7 signal-safety”
▪ Popular functions on the list:
▪ _exit, write, wait, waitpid, sleep, kill ▪ Popular functions that are not on the list:
▪ printf, sprintf, malloc, exit
▪ Unfortunate fact: write is the only async-signal-safe output function
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon
Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in your handlers.
▪ ssize_t sio_puts(char s[]) /* Put string */
▪ ssize_t sio_putl(long v) ▪ void sio_error(char s[])
/* Put long */
/* Put msg & exit */
void sigint_handler(int sig) /* Safe SIGINT handler */ {
}
sigintsafe.c
Sio_puts(“So you think you can stop the bomb” ” with ctrl-c, do you?\n”);
sleep(2);
Sio_puts(“Well…”);
sleep(1);
Sio_puts(“OK. :-)\n”);
_exit(0);
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
56

Carnegie Mellon
Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf ! ▪ Handles restricted class of printf format strings
▪ Recognizes: %c %s %d %u %x %% ▪ Size designators ‘l’ and ‘z’
void sigint_handler(int sig) /* Safe SIGINT handler */ {
Sio_printf(“So you think you can stop the bomb”
” (process %d) with ctrl-%c, do you?\n”,
(int) getpid(), ‘c’);
sleep(2); Sio_puts(“Well…”); sleep(1); Sio_puts(“OK. :-)\n”); _exit(0);
}
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
57
sigintsafe.c

Carnegie Mellon
volatile int ccount = 0; void child_handler(int sig) {
int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0) Sio_error("wait error"); ccount--; Sio_puts("Handler reaped child "); Sio_putl((long)pid); Sio_puts(" \n"); sleep(1); Correct Signal Handling errno = olderrno; } void fork14() { pid_t pid[N];  Pending signals are not queued ▪For each signal type, one bit indicates whether or not signal is pending... ▪...thus at most one pending signal of any particular type.  You can’t use signals to count events, such as children terminating. This code is incorrect! int i; ccount = N; Signal(SIGCHLD, child_handler); for (i = 0; i < N; i++) { if ((pid[i] = Fork()) == 0) { Sleep(1); exit(0); /* Child exits */ } } while (ccount > 0) /* Parent spins */
;
}
forks.c
58
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
N == 5
whaleshark> ./forks 14 Handler reaped child 23240 Handler reaped child 23241 . . .(hangs)

Carnegie Mellon
Correct Signal Handling
 Must wait for all terminated child processes
▪ Put wait in a loop to reap all terminated children
void child_handler2(int sig)
{
int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {
ccount–;
Sio_puts(“Handler reaped child “);
Sio_putl((long)pid);
Sio_puts(” \n”);
}
if (errno != ECHILD)
Sio_error(“wait error”);
errno = olderrno;
}
whaleshark> ./forks 15 Handler reaped child 23246 Handler reaped child 23247 Handler reaped child 23248 Handler reaped child 23249 Handler reaped child 23250 whaleshark>
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon
Synchronizing to Avoid Parent-Child Race
int main(int argc, char **argv)
{
int pid;
sigset_t mask_all, mask_one, prev_one; int n = N; /* N = 5 */ Sigfillset(&mask_all); Sigemptyset(&mask_one); Sigaddset(&mask_one, SIGCHLD); Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */
while (n–) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */ if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve(“/bin/date”, argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */ addjob(pid); /* Add the child to the job list */ Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
} exit(0);
} procmask2.c Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
62

Carnegie Mellon
Explicitly Waiting for Signals
 Handlers for program explicitly waiting for SIGCHLD to arrive.
volatile sig_atomic_t pid;
void sigchld_handler(int s)
{
int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;
}
void sigint_handler(int s) {
}
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63
waitforsignal.c

Explicitly Waiting for Signals
int main(int argc, char **argv) {
sigset_t mask, prev;
int n = N; /* N = 10 */
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);
while (n–) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */
/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid) ;
/* Do some work after receiving SIGCHLD */
printf(“.”);
}
printf(“\n”);
exit(0);
}
Carnegie Mellon
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
64
Similar to a shell waiting for a foreground job to terminate.
waitforsignal.c

Carnegie Mellon
Explicitly Waiting for Signals
 Program is correct, but very wasteful ▪ Program in busy-wait loop
 Possible race condition
▪ Between checking pid and starting pause, might receive signal
 Safe, but slow
▪ Will take up to one second to respond
while (!pid)
;
while (!pid) /* Race! */
pause();
while (!pid) /* Too slow! */
sleep(1);
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon
Waiting for Signals with sigsuspend  int sigsuspend(const sigset_t *mask)
 Equivalent to atomic (uninterruptable) version of:
sigprocmask(SIG_SETMASK, &mask, &prev); pause();
sigprocmask(SIG_SETMASK, &prev, NULL);
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon
Waiting for Signals with sigsuspend
int main(int argc, char **argv) { sigset_t mask, prev;
int n = N; /* N = 10 */ Signal(SIGCHLD, sigchld_handler); Signal(SIGINT, sigint_handler); Sigemptyset(&mask); Sigaddset(&mask, SIGCHLD);
}
sigsuspend.c
while (n–) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit(0);
/* Wait for SIGCHLD to be received */
pid = 0;
while (!pid)
Sigsuspend(&prev);
/* Optionally unblock SIGCHLD */
Sigprocmask(SIG_SETMASK, &prev, NULL);
/* Do some work after receiving SIGCHLD */
printf(“.”);
} printf(“\n”); exit(0);
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
67

Carnegie Mellon
Summary
 Signals provide process-level exception handling ▪ Can generate from user programs
▪ Can define effect by declaring signal handler
▪ Be very careful when writing signal handlers
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon
Additional slides
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon
Sending Signals with kill Function
void fork12() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++) if ((pid[i] = fork()) == 0) { /* Child: Infinite Loop */ while(1) ; } for (i = 0; i < N; i++) { printf("Killing process %d\n", pid[i]); kill(pid[i], SIGINT); } for (i = 0; i < N; i++) { pid_t wpid = wait(&child_status); if (WIFEXITED(child_status)) printf("Child %d terminated with exit status %d\n", wpid, WEXITSTATUS(child_status)); else printf("Child %d terminated abnormally\n", wpid); forks.c } } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70 Carnegie Mellon Nonlocal Jumps: setjmp/longjmp  Powerful (but dangerous) user-level mechanism for transferring control to an arbitrary location ▪ Controlled to way to break the procedure call / return discipline ▪ Useful for error recovery and signal handling  int setjmp(jmp_buf j) ▪ Must be called before longjmp ▪ Identifies a return site for a subsequent longjmp ▪ Called once, returns one or more times  Implementation: ▪ Remember where you are by storing the current register context, stack pointer, and PC value in jmp_buf ▪ Return 0 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71 Carnegie Mellon setjmp/longjmp (cont)  void longjmp(jmp_buf j, int i) ▪ Meaning: ▪ return from the setjmp remembered by jump buffer j again ... ▪ ... this time returning i instead of 0 ▪ Called after setjmp ▪ Called once, but never returns  longjmpImplementation: ▪ Restore register context (stack pointer, base pointer, PC value) from jump buffer j ▪ Set %eax (the return value) to i ▪ Jump to the location indicated by the PC stored in jump buf j Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72 Carnegie Mellon setjmp/longjmp Example  Goal: return directly to original caller from a deeply- nested function /* Deeply nested function foo */ void foo(void) { if (error1) longjmp(buf, 1); bar(); } void bar(void) { if (error2) longjmp(buf, 2); } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73 Carnegie Mellon jmp_buf buf; int error1 = 0; int error2 = 1; void foo(void), bar(void); int main() { switch(setjmp(buf)) { case 0: foo(); break; case 1: printf("Detected an error1 condition in foo\n"); break; case 2: printf("Detected an error2 condition in foo\n"); break; default: printf("Unknown error condition in foo\n"); } exit(0); } Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74 setjmp/longjmp Example (cont) Carnegie Mellon Limitations of Nonlocal Jumps  Works within stack discipline ▪ Can only long jump to environment of function that has been called but not yet completed jmp_buf env; P1() { if (setjmp(env)) { /* Long Jump to here */ } else { P2(); } } P2() { ...P2();...P3();} P3() { longjmp(env, 1); } env Before longjmp After longjmp P1 P1 P2 P2 P2 P3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75 Carnegie Mellon Limitations of Long Jumps (cont.)  Works within stack discipline ▪ Can only long jump to environment of function that has been called but not yet completed P1 P2 jmp_buf env; P1() { P2(); P3(); } P2() { if (setjmp(env)) { env /* Long Jump to here */ X } } P3() {X longjmp(env, 1); } At setjmp P1 P2 env P1 P3 P2 returns env Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 76 At longjmp Carnegie Mellon Putting It All Together: A Program That Restarts Itself When ctrl-c’d #include "csapp.h" sigjmp_buf buf; void handler(int sig) { siglongjmp(buf, 1); } int main() { if (!sigsetjmp(buf, 1)) { Signal(SIGINT, handler); Sio_puts("starting\n"); } else Sio_puts("restarting\n"); while(1) { Sleep(1); Sio_puts("processing...\n"); } exit(0); /* Control never reaches here */ } restart.c Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 77 greatwhite> ./restart starting processing… processing… processing… restarting processing… processing… restarting processing… processing… processing…
Ctrl-c
Ctrl-c