程序代写代做代考 ER µÚ 5 6 ¾í µÚ 1 2 ÆÚ 2 0 0 7 Äê 1 2 Ô Îï Àí ѧ ±¨ V o l .5 6 , N o .1 2 , D e c e m b e r , 2 0 0 7 1000-3290 2007 56( 12) 6911-07 ACTA PHYSICA SINICA c2007 Chin.Phys.Soc.

µÚ 5 6 ¾í µÚ 1 2 ÆÚ 2 0 0 7 Äê 1 2 Ô Îï Àí ѧ ±¨ V o l .5 6 , N o .1 2 , D e c e m b e r , 2 0 0 7 1000-3290 2007 56( 12) 6911-07 ACTA PHYSICA SINICA c2007 Chin.Phys.Soc.
¦ÁÁ£×ÓµÄÂý»¯¹ý³Ì¶Ô D-T µÈÀë×ÓÌå ¾Û±äȼÉÕµÄÓ°Ïì *
Ê© ÑÐ ²© 1 ) Ó¦ Ñô ¾ý 2 ) Àî ½ð ºè 2 )
1) ( Öйú¹¤³ÌÎïÀíÑо¿ÔºÑо¿Éú²¿, ±±¾© 100088) 2) ( ±±¾©Ó¦ÓÃÎïÀíÓë¼ÆËãÊýѧÑо¿Ëù, ±±¾© 100088) ( 2 0 0 7 Äê 3 Ô 8 ÈÕ ÊÕ µ½ ;2 0 0 7 Äê 5 Ô 8 ÈÕ ÊÕ µ½ ÐÞ ¸Ä ¸å )
ÔÚ˫ξ۱äȼÉÕµãÄ£ÐÍ¿ò¼ÜÏÂ,¶Ô±ÈD-TµÈÀë×ÓÌå¾Û±äȼÉÕ¹ý³ÌÖЦÁÁ£×ÓÄÜÁ¿Öð²½³Á»ýÓë˲ʱ³Á»ýÁ½ÖÖÃèÊö µÄµÈ Àë×ÓÌåÎÂ¶È ¡¢Àë×ÓÊýÃܶÈËæʱ¼äµÄ±ä»¯, ÔÚ²»Í¬µÄÃܶÈÌõ¼þÏÂ×÷Á˼ÆËã , ¿¼²ì ÁË ¦ÁÁ£ ×ÓµÄÂý»¯¹ý ³Ì¶Ô D-T ¾Û±ä µã»ðµÄÓ°Ïì.·¢ÏÖ¿¼ÂǦÁÁ£×ÓµÄÂý»¯¹ý³Ìºó, D-T µÈÀë×ÓÌå·åֵζȵijöÏÖ½«»áÍƳÙÈô¸ÉƤÃëÉõÖÁ¼¸Ê®Æ¤Ãë, ÔÚ½Ï µÍµÄ³õʼζÈÃܶÈÌõ¼þÏÂ,ʱ¼äÍƳٵøü¶àЩ.µÈÀë×ÓÌåµÄ·åֵζȱȦÁÁ£×ÓÄÜÁ¿Ë²Ê±³Á»ýÃèÊöÒ²»áϽµ13 keV ×óÓÒ.
¹Ø¼ü´Ê:¦ÁÁ£×Ó, ¾Û±äȼÉÕ, ÄÜÁ¿³Á»ý, Âý»¯¹ý³Ì PACC :2852, 2852C, 2852J
1.Òý ÑÔ
Êܿغ˾۱äÊǽâ¾öÈËÀ೤¾ÃÄÜÔ´ÐèÇó×îÓÐÏ£Íû µÄ;¾¶Ö®Ò».ÔÚ´ÅÔ¼Êø¾Û±ä[1] ºÍ¹ßÐÔÔ¼Êø¾Û±ä[2] (ICF)ÖÐ,ÓÐÏ£ÍûÊ×ÏÈʵÏÖµã»ðµÄÈȺËȼÁÏÓÐD-T[ 2] , D-3He[ 3] µÈ.ÈȺËȼÁϾ۱䷴Ӧ²úÉúµÄ¦ÁÁ£×ÓÔÚµÈÀë ×ÓÌåÖгÁ»ýµÄÄÜÁ¿Êǵã»ðÖ®ºóά³Ö¾Û±äȼÉÕµÄÖØÒª ÄÜÁ¿À´Ô´ .ÔÚ ICF °ÐÉè¼ÆÒÔ¼°¶ÔһЩʵÑéÏÖÏóµÄÄ£ ÄâÖÐ, ÓÉÓÚÖ÷Òª¹ØÐĵÄÊÇһЩ·øÉäÁ÷ÌåÁ¦Ñ§¹ý³Ì, ¶ø ¦ÁÁ£×ÓµÄÂý»¯Ê±¼äԶСÓÚ·øÉäÁ÷ÌåÁ¦Ñ§µÄÌØÕ÷ʱ ¼ä,ËùÒÔ¦ÁÁ£×ÓµÄÄÜÁ¿³Á»ý³£±»ÈÏΪÊÇ˲ʱµÄ[4] .µ« ÔÚÌØÕ÷ʱ¼äÓë¦ÁÁ£×ÓÂý»¯Ê±¼ä½Ó½üµÄµã»ð[5]¹ý³Ì ÖÐ, ÓбØÒª¸üϸÖµØÑо¿ ¦ÁÁ£×ÓµÄÄÜÁ¿ÔÚµÈÀë×ÓÌå ÖеijÁ»ý¹ý³Ì.
Ä¿Ç°Ö÷ÒªÓÐÁ½ÖÖÀíÂÛÀ´ÃèÊö´øµçÁ£×ÓÔÚµÈÀë×Ó ÌåÖеÄÄÜÁ¿³Á»ý.Ò»ÖÖÊǶþÔªÅöײÀíÂÛ( binary collision theory) , ÈÏΪ´øµçÁ£×Óͨ¹ýÁ¬ÐøµÄÁ½Ìå¿âÂØ ÅöײËðʧÄÜÁ¿[ 6 ¡ª8] ;ÁíÒ»ÖÖÊǽéµçÀíÂÛ ( dielectric theory) , ÈÏΪ´øµçÁ£×Óͨ¹ýÒýÆðµÈÀë×ÓÌåµÄ¼«»¯¶ø ËðʧÄÜÁ¿[9] .
* ¹ú ·À ¿Æ ¼¼ Ô¤ ÑÐ »ù ½ð ( Åú ×¼ ºÅ :4 2 6 0 1 ) ×Ê Öú µÄ ¿Î Ìâ . E – m a i l :y a n b o s c h @ g m a i l .c o m
±¾ÎIJÉÓÃÁ½ÌåÅöײÀíÂÛÃèÊö¦ÁÁ£×ÓµÄÄÜÁ¿ÔÚµÈ Àë×ÓÌåÖеijÁ»ý¹ý³Ì, »ùÓÚÒ»¸ö·Ö¿ª¿¼ÂǵÈÀë×ÓÌå ζȺ͵ÈЧ·øÉäζȵÄ˫ξ۱äȼÉÕµãÄ£ÐÍ, ÔÚ²» ͬµÄ³õʼÎÂ¶È ¡¢ÃܶÈÌõ¼þÏÂ, ¼ÆËã D-T µÈÀë×ÓÌåÎÂ¶È ºÍÁ£×ÓÊýÃܶÈËæʱ¼äµÄ±ä»¯, Óë˲ʱ³Á»ýÄÜÁ¿ÃèÊö ϵĽá¹û×÷¶Ô±È,Ñо¿¦ÁÁ£×ÓµÄÂý»¯¹ý³Ì¶Ô¾Û±äµã »ðµÄÓ°Ïì.
2.ÀíÂÛÄ£ÐÍ
²É Óà D – T ×÷ Ϊ ¾Û ±ä ȼ ÁÏ , D – T ±È Ϊ 1 ¡Ã1 .¼Ù ¶¨ I C F ʵÑé×°ÖÃÒѾ­¾ßÓÐÁ˽ϺõÄζȡ¢ÃܶÈÌõ¼þ,ʹµÃ D-TÊÇÍêÈ«µçÀëµÄµÈÀë×ÓÌå,µÈÀë×ÓÌåÔÚ¾Û±äȼÉÕ ¹ý³ÌÖÐÃܶȺÍζÈʼÖÕÊÇ¿Õ¼ä¾ùÔȵÄ, ºöÂÔѹÁ¦×ö ¹¦ºÍÈÈ´«µ¼ .µÈÀë×ÓÌåÖеÄÁ£×ÓÔÚ¾Û±äȼÉÕ¹ý³ÌÖÐ ´¦ÓÚÈÈƽºâ״̬, ¾ßÓÐͳһµÄµÈÀë×ÓÌåÎÂ¶È T , ¹â×Ó Ò²´¦ÓÚƽºâ״̬, ¾ßÓеÈЧ·øÉäÎÂ¶È Tr .ÓÉÓÚ´øµç Á£×Ó¼äµÄÈÈƽºâ³Úԥʱ¼äԶСÓÚ´øµçÁ£×ÓÓë·øÉ䳡 Ö®¼äµÄÈÈƽºâ³Úԥʱ¼ä[ 10] , ¶ÔÓÚ±¾ÎĵÄÑо¿¶ÔÏó, ÕâÖÖË«ÎÂÄ£ÐÍÊǺÏÀíµÄ .
D-TÖ÷ÒªÓÐÒÔÏÂËĸö¾Û±ä·´Ó¦µÀ:

6912
Îï Àí ѧ ±¨ 56¾í
D+T¡ùn(14.07MeV) +¦Á(3.52MeV), D+D¡ù3He(0.82MeV)+n(2.45MeV), D + D ¡ù T ( 1 .0 1 M e V ) + p ( 3 .0 3 M e V ) ,
D + 3 H e ¡ù ¦Á( 3 .6 M e V ) + p ( 1 4 .7 M e V ) .
3 He ºÍÖÊ×Ó p ÓÉÓÚ²ú¶îºÜÉÙ, ËüÃǶԵÈÀë×ÓÌåµÄÄÜ
Á¿¹±Ï׿ÉÒÔºöÂÔ, ±¾¹¤×÷δÓ迼ÂÇ . 2 .1 . ¦Á Á£ ×Ó ÄÜ Á¿ ³Á »ý µÄ ʱ ¼ä ÐРΪ
ÓɶþÔªÅöײÀíÂÛ[ 6] ¿ÉÒÔµ¼³ö ¦ÁÁ£×Ó¶ÔµÈÀë×ÓÌå Öеç×ÓµÄÄÜÁ¿ËðʧÂʹ«Ê½Îª
ÂضÔÊý,ϱê¦Á´ú±í¦ÁÁ£×Ó,k´ú±íµÈÀë×ÓÌåÖÐµÄµÚ k ÖÖÀë×Ó, k ¿ÉÒÔÊÇT, 4 He, D, 3He, p .
2m¦Á e4
Ak =4¦Ð(Z¦ÁZk) mk 2m¦Ác2c,
¦«k =-ln[ ¦Ð(e2)3(m¦Ám¦Ã) Z¦ÁZk ] +12lnT(t) -12lnne(t) +lnE¦Á(t1,t),
(1) (2) (3) (4)
ÆäÖÐ m¦ÃΪԼ»¯ÖÊÁ¿,
m¦Ã=m¦Ámk .

d E ¦Á( t 1 , t )
= A e
n e
E ¦Á( t 1 , t )
¦«e F e ( y e ) , ( 5 )
m¦Á +mk ¦ÁÁ£×ÓÔÚµÈÀë×ÓÌåÖеÄÄÜÁ¿ËðʧÂÊ¿ÉÒÔÈÏΪÊÇ
dt e
ʽ ÖÐ n e ÊÇ µç ×Ó Êý ÃÜ ¶È , E ¦Á( t 1 , t ) ÊÇ t 1 ʱ ¿Ì ²ú Éú µÄ ¦Á
Á£×Ó·ÉÐе½ t ʱ¿ÌʱµÄÄÜÁ¿, ¦«e Êǵç×ӵĿâÂØ¶Ô Êý,¶ø
¶Ôµç×ÓµÄÄÜÁ¿ËðʧÂʺͶÔÀë×ÓµÄÄÜÁ¿ËðʧÂÊÖ® ºÍ, ¼´
– d E ¦Á( t 1 , t ) dt
2m¦Á e4
me
¦«e(t)=-ln[(23) Z¦ÁZe ¦Ð(e2)3] + 1 .5 l n T ( t ) – 0 .5 l n n e ,
=-dE¦Á(t1,t)
dte dti
+ -dE¦Á(t1,t) , (8)
Ae =4¦Ð(Z¦ÁZe)
c,
2m¦Ác2 ÆäÖÐZ¦ÁºÍZe ·Ö±ðÊǦÁÁ£×Ӻ͵ç×ӵĺ˵çºÉÊý,me ÊÇ µç ×Ó µÄ ÖÊ Á¿ , m ¦Á ÊÇ ¦ÁÁ£ ×Ó µÄ ÖÊ Á¿ , c ÊÇ ¹â ËÙ , e ÊÇ
»ù±¾µçºÉµçÁ¿.
ʽÖÐ[ -dE¦Á( t1, t) dt]i ÊǦÁÁ£×Ó¶ÔµÈÀë×ÓÌåÖÐËù ÓÐÖÖÀàÀë×ÓµÄ×ÜÄÜÁ¿ËðʧÂÊ,
dE¦Á(t1,t) ¡Æ dE¦Á(t1,t) k
– =- .(9)
dtik dti ÀûÓÃ(5) ¡ª(9)ʽ¿ÉÒÔ¿¼²ì¦ÁÁ£×ÓµÄÄÜÁ¿ÔÚD-T µÈÀë×ÓÌåÖгÁ»ýµÄʱ¼äÐÐΪ .³õʼʱ¿ÌÄÜÁ¿Îª E µÄ
ÆäÖеÈÀë×ÓÌåÎÂ¶È T µÄµ¥Î»ÊÇkeV .
Fe(ye) =erf(ye) – 1+me yeerf¡ä(ye),
¦ÁÁ£×ÓÂý»¯µ½ÄÜÁ¿ E¡äËùÐèÒªµÄʱ¼ät ¿ÉÒÔ±íʾΪ t(E,E¡ä)=¡ÒE dE¦Á . (10)
m¦Á
ye = meE¦Á(t1,t) [m¦ÁT(t)],
E ¡ä – d E ¦Á( t 1 , t ) d t Èç¹ûE¡ä=Eth EthÊǵÈÀë×ÓÌåµÄÈȶ¯ÄÜ,Eth =
ÆäÖÐ
erf( ye) ºÍerf¡ä( ye) ·Ö±ðÊÇÎó²îº¯ÊýºÍËüµÄµ¼Êý,
32T ,ÄÇôt(E,Eth)¾ÍÊǦÁÁ£×ÓµÄÂý»¯Ê±¼ä.ÔÚÃÜ ¶ÈΪ500g cm3,ζÈΪ3keVµÄD-TµÈÀë×ÓÌåÖÐ,
ͼ1 ÔÚÃܶÈΪ500gcm3 ¡¢Î¶ÈΪ3keVµÄD-TµÈÀë×ÓÌåÖÐ,¦ÁÁ£ ×Ó µÄ ÄÜ Á¿ E ¦Á Ëæ ʱ ¼ä t µÄ ±ä »¯ ¦Á Á£ ×Ó µÄ ³õ ʼ ÄÜ Á¿ Ϊ 3 .5 2 M e V
¡Òy erf(ye)=2 ee-x2dx,
erf¡ä(ye) =2exp(-y2e). ¦Ð
ÓÉ y e µÄ±í´ïʽ¿ÉÒÔ¿´³ö, ÔÚ´ó¶àÊýÇé¿öÏ ye 1, ÔÚº¯Êý F e( y e) ÖаÑÖ¸Êýº¯Êý¶Ô y e ÔÚÁãµã¸½½üÕ¹¿ª ¿ÉÒÔÓнøÒ»²½µÄ½üËÆ[ 6] ,
Fe(ye)¡Ö41y3e1-1.5T. (6) 3¦Ð E¦Á
¦ÁÁ£×Ó¶ÔµÈÀë×ÓÌåÖеÄÒ»ÖÖÀë×ÓµÄÄÜÁ¿ËðʧÂÊ ¿ÉÒÔ±íʾΪ
¦Ð
0
dE¦Á(t1,t) k
nk(t)
E ¦Á( t 1 , t )

ʽÖÐ Ak ÊÇÓëÁ£×ÓÖÖÀàÏà¹ØµÄϵÊý, ¦«k ÊÇÀë×ӵĿâ
d t i
=Ak
¦«k, (7)

1 2 ÆÚ Ê© ÑÐ ²© µÈ :¦Á Á£ ×Ó µÄ Âý »¯ ¹ý ³Ì ¶Ô D – T µÈ Àë ×Ó Ìå ¾Û ±ä ȼ ÉÕ µÄ Ó° Ïì
69 13
3 .5 2 M e V µÄ ¦Á Á£ ×Ó µÄ Âý »¯ ʱ ¼ä Ô¼ Ϊ 0 .3 1 p s . ÔÚÒÑÖª³õʼÄÜÁ¿ E ºÍÂý»¯Ê±¼äµÄÇé¿öÏÂ, ÓÉ (10)ʽ¿ÉÒÔÇó³ö¦ÁÁ£×ÓÔÚµÈÀë×ÓÌåÖзÉÐÐtʱ¼äÖ® ºó µÄ ÄÜ Á¿ E ¡ä.ͼ 1 ¸ø ³ö ÁË ÔÚ ÃÜ ¶È Ϊ 5 0 0 g c m 3 , Π¶È Ϊ 3 k e V µÄ D – T µÈ Àë ×Ó Ìå ÖÐ , 3 .5 2 M e V µÄ ¦Á Á£ ×Ó ÄÜ
Á¿E¦ÁËæʱ¼ä t µÄ±ä»¯. 2 .2 . Á£ ×Ó Êý ÃÜ ¶È ·½ ³Ì
¼ÙÉèÔÚËù¹ØÐĵÄʱ¼ä·¶Î§ÄÚµÈÀë×ÓÌåµÄÌå»ý²» ±ä, ¿ÉÒÔд³öµÈÀë×ÓÌåÖи÷ÖÖÁ£×ÓµÄÁ£×ÓÊýÃÜ¶È ·½³Ì,
¡Òt dE¦Á(t1,t) S¦Á(t) = –
t dt
RDT(t1)dt1, (18)
0
ÆäÖÐ-dE¦Á(t1,t) dtÓÉ(8)ʽ¸ø³ö,¶Ôµç×ÓµÄÄÜÁ¿Ëð
ʧÂÊʹÓÃ(5)ʽ,»ý·ÖÏÂÏÞt0 ʱÕâÑùÈ·¶¨µÄ, t0 ʱ¿Ì ²ú Éú µÄ ¦ÁÁ£ ×Ó ·É µ½ t ʱ ¿Ì ʱ Õý ºÃ ÈÈ »¯ .
(16)ºÍ(17)ʽÖеÄ(dEr dt)b ΪéíÖ¹ý³ÌÏî,±í
ʾµ¥Î»Ìå»ýÖÐÓÉµÚ k ÖÖÀë×ÓÒýÆðµÄéíÖ¹ý³Ìʹµç ×ÓÔÚµ¥Î»Ê±¼äÄÚËðʧµÄÄÜÁ¿ .ÕâÀïéíÖ¹ý³Ì°üÀ¨×Ô
dnT=RDDp-RDT, (11)
·¢·¢Éä ¡¢ÓÕµ¼·¢ÉäºÍÄæéíÖ·øÉä[ 8, 10] ÒÔ¾ßÌåµØдΪ[ 10]
k dEr =¡ÆdEr ,
.éíÖ¹ý³ÌÏî¿É (19)
1.709
dtb k dtb
dt k222
dEr
dt b
e (e)c
2 32
3 dn¦Á =RDT +RDHe
=16 2¦Ð
¡ÁZ2 Tnn1-Tr
, (12) dt=-RDT-2(RDDn+RDDp)-RD3He,(13)
d n 3H e
dt =RDDn -RD3He, (14)
dnp=RDD+RD3He. (15) dt
ÕâÀï nk ÊǵÈÀë×ÓÌåÖеÚk ÖÖÀë×ÓµÄÁ£×ÓÊýÃܶÈ, Rij ±íʾµ¥Î»Ìå»ýÖеÚiÖÖÀë×Ӻ͵ÚjÖÖÀë×ÓÔÚµ¥Î»Ê± ¼äÄÚ·¢ÉúÈȺ˷´Ó¦µÄ´ÎÊý .
Rij = ninj ¡´¦Òv¡µij, 1 + ¦Äi j
ÆäÖС´¦Òv¡µij ±íʾËٶȰ´Maxwell ·Ö²¼µÄµÚ i ÖÖÀë×Ó ºÍµÚj ÖÖÀë×ÓµÄƽ¾ùÈȺ˷´Ó¦ËÙÂÊ, ËüÊÇÎÂ¶ÈµÄ º¯Êý[9] .
2 .3 . ÄÜ Á¿ Ëð ʧ ÂÊ ·½ ³Ì µÈÀë×ÓÌåµÄÄÜÁ¿Ãܶȱ仯ÂÊ¿ÉÒÔ±íʾΪ
dEp dEr dEC dt=S¦Á-dtb-dt. (16)
¹â×ÓµÄÄÜÁ¿Ãܶȱ仯ÂÊ¿ÉÒÔд³É
dEr = dEr +dEC . (17) dt dt b dt
ÕâÀï Ep ÊǵÈÀë×ÓÌåµÄÄÜÁ¿ÃܶÈ.µÈÀë×ÓÌåΪÀíÏë ÆøÌåµÄÇé¿öÏÂ,
3
Ep =2(ni +ne)T,
ÆäÖÐniÊǵÈÀë×ÓÌåÖÐ×ܵÄÀë×ÓÊýÃܶÈ.(16)ʽÖÐµÄ S¦ÁÊǵ¥Î»Ìå»ýÖеĦÁÁ£×ÓÔÚµ¥Î»Ê±¼äÄÚ´«µÝ¸øµÈ Àë×ÓÌåµÄÄÜÁ¿,
c(3mec) kkeT
dt dnD
,(20) ÆäÖÐ Er ÊÇ·øÉäÄÜÁ¿ÃܶÈ, ·øÉäÎÂ¶È Tr µÄµ¥Î»Ò²ÊÇ
keV.
(16)ºÍ(17)ʽÖеÄdEC dtΪ¿µÆÕ¶ÙÉ¢ÉäÏî,±í ʾµ¥Î»Ìå»ýÖпµÆÕ¶ÙÉ¢Éäµ¼Öµĵç×ÓÓë¹â×ÓÖ®¼äÔÚ µ¥Î»Ê±¼äÄÚµÄÄÜÁ¿½»»» .¿µÆÕ¶ÙÉ¢ÉäÏî[ 10] ¿ÉÒÔдΪ
(21)
Er =¦Ò¡äaT4r, ¦Ð2
¦Ò¡äa= 3. 15( c)
dEC3222 ¦Ð3
= (e) c 2 neT
dt45 mecc ¡Á 1-Tr (Tr)4 .
T
²ÉÓÃËIJ½ÏÔʽÓëÈý²½ÒþʽµÄ Adams ·½·¨¹¹³ÉµÄ Ô¤±¨Ð£Õý¸ñʽÀ´Çó½âÓÉÎå¸öÁ£×ÓÊýÃܶÈƽºâ·½³ÌºÍ Á½¸öÄÜÁ¿Ãܶȱ仯ÂÊ·½³ÌËù¹¹³ÉµÄ·½³Ì×é .¾Û±äȼ ÉÕ¹ý³ÌÓ¦µ±Âú×ãÄÜÁ¿ÊغãºÍµçºÉÊغã, µ«ÊýÖµÇó½â µÄʱºò»á´øÀ´Îó²î, ËùÒÔͨ¹ýÄÜÁ¿ÊغãºÍµçºÉÊغ㠼ìÑéÊýÖµ·½·¨ÒýÆðµÄÎó²îÊÇ·ñµÃµ½¿ØÖÆ .ÄÜÁ¿Êغ㠵ļìÑ鹫ʽΪ
f E C ( t ) = 1 .0 – ¦¤ E ( t ) , ( 2 2 ) ¦¤E t ot ( t )
ʽÖЦ¤E(t)ÊÇ´Ót1 ʱ¿Ìµ½tʱ¿ÌµÈÀë×ÓÌåÄÜÁ¿ÃÜ ¶ÈµÄÔö¼Ó,¦¤Etot(t)ÊÇ´Ót1 ʱ¿Ìµ½tʱ¿ÌÓɵ¥Î»Ìå »ýÖÐµÄ ¦ÁÁ£×ÓÌṩ¸øµÈÀë×ÓÌåµÄÄÜÁ¿,
¦¤E(t) =Ep(t)+Er(t)-[Ep(t1)+Er(t1)], ¡Òt
¦¤Etot(t) = S¦Á(t¡ä)dt¡ä.
t
1

6914
Îï Àí ѧ ±¨ 56¾í
ÿ ¸ô Èô ¸É ʱ ¼ä ²½ ¶Ô f EC ½ø ÐÐ Ò» ´Î ¼Æ Ëã . µçºÉÊغãµÄ¼ìÑ鹫ʽ¿ÉÒÔ±íʾΪ
fCC(t) =1.0-n+, n-
(23)
µÈÀë×ÓÌåζÈÓëµÈЧ·øÉäζÈÆ«ÀëµÄ¼Ó´ó,µç×Ó¡¢¹â ×ÓÖ®¼äÄÜÁ¿½»»»Ò²¸ü¼Ó¾çÁÒ, ÕâÁ½ÖÖ»úÖƴﵽƽºâ, ¾ÍʹµÃµÈÀë×ÓÌåζȳöÏÖ·åÖµ .ÓÉÓÚÔÚÕâÆÚ¼ä´óÁ¿ µÄD-TÀë×Ó±»È¼ÉÕ,ÈȺ˷´Ó¦ËÙÂÊÒ²ËæÖ®¼õС,µç×Ó ½«ÄÜÁ¿×ªÒƸø¹â×ÓµÄÄÜÁ¿Ëðʧ»úÖÆÕ¼Ö÷µ¼, ʹµÃµÈ Àë×ÓÌåÎÂ¶È T ѸËÙϽµ²¢ÓëµÈЧ·øÉäÎÂ¶È Tr ½Ó½ü .
ͼ 3 ΪµÈÀë×ÓÌåÖÐ D ºÍ T µÄÏà¶ÔÁ£×ÓÊýÃÜ¶È nD n0ºÍnT n0Ëæʱ¼äµÄ±ä»¯.´Óͼ3¿ÉÒÔ¿´³ö,ÔÚ
0 .0 2 ¡ª 0 .0 3 n s Ö® ¼ä D – T µÈ Àë ×Ó Ìå ¾ç ÁÒ È¼ ÉÕ , ÓÐ ³¬ ¹ý 30%µÄDÀë×ÓºÍTÀë×Ó±»ÉÕµô.´Óͼ3Öл¹¿ÉÒÔ¿´ ³ö, ÔÚȼÉÕÄ©ÆÚ, T µÄÁ£×ÓÊýÃܶÈÒªÉÔ´óÓÚ D µÄÁ£×Ó ÊýÃܶÈ, ÕâÊÇÒòΪ( 3) ʽËùʾµÄ¾Û±ä·´Ó¦Ê¹µÃ T µÃµ½ Ò»¶¨µÄ²¹³¥.
ͼ3 µÈÀë×ÓÌåÖÐDºÍTµÄÏà¶ÔÁ£×ÓÊýÃܶÈnD n0ºÍnT n0Ëæ ʱ¼ätµÄ±ä»¯ n0 ¶ÔÓ¦³õʼʱ¿ÌDµÄÁ£×ÓÊýÃܶÈ,³õʼʱ¿ÌµÈ Àë×ÓÌåζÈTºÍµÈЧ·øÉäζÈTr ¶¼Îª3 keV,D-TÃܶÈΪ500 g c m 3 .ʵ Ïß Îª T , Ðé Ïß Îª D
ͼ 4 ΪÕû¸öȼÉÕ¹ý³ÌÖжÔÄÜÁ¿ÊغãµÄ¼ìÑé .´Ó ͼ 4 ¿É ÒÔ ¿´ ³ö , µ± t > 0 .0 1 n s ʱ , f E C ( t ) ¡Ü 0 .0 0 4 % . ÁíÍâµçºÉÊغãÔÚÕû¸öȼÉÕ¹ý³ÌÖÐÓÐ fCC ( t) ¡Ü 10-10 %.
ͼ 5 ¶Ô±ÈÁË ¦ÁÁ£×ÓÄÜÁ¿Ë²Ê±³Á»ýºÍÖð²½³Á»ýÁ½ ÖÖÃèÊöϵÈÀë×ÓÌåζÈËæʱ¼äµÄ±ä»¯, ͼÖÐÏÔʾÁË ¿¼ ÂÇ ¦Á Á£ ×Ó µÄ Âý »¯ ¹ý ³Ì ¶Ô D – T ¾Û ±ä µã »ð µÄ Ó° Ïì .´Ó ͼ 5 ¿ÉÒÔ¿´³ö, ¿¼ÂÇ ¦ÁÁ£×ÓµÄÂý»¯¹ý³ÌºóµÈÀë×ÓÌå ζȷåÖµÑÓ³Ù³öÏÖ, ÇÒ±È˲ʱÄÜÁ¿ËðʧÃèÊöϵķå Öµ Π¶È µÍ 1 3 k e V ×ó ÓÒ .´Ó µÈ Àë ×Ó Ìå Π¶È ·å µÄ ÐÎ ×´ ¿´, ¿¼ÂÇ ¦ÁÁ£×ÓµÄÂý»¯¹ý³Ìºó, µÈÀë×ÓÌåζȷåµÄÉÏ ÉýÇ°ÑØÒ²±È˲ʱ³Á»ýÄÜÁ¿ÃèÊöµÄÉÏÉýÇ°Ñظü»ººÍ, ·åÐθü¿í.
ʽÖÐ n +ºÍ n – ·Ö±ð±íʾ t ʱ¿Ìµ¥Î»Ìå»ýµÄµÈÀë×Ó ÌåÖеÄÕýµçºÉ×ÜÊýºÍ¸ºµçºÉ×ÜÊý .
n+(t) =nD(t) +nT(t)
+ 2 [ n 4H e ( t ) + n 3 H e ( t ) ] + n p ( t ) ,
n-(t) =ne .
ÕâÀï ne ÔÚȼÉÕ¹ý³ÌÖÐʼÖÕ±£³Ö²»±ä.
3.¼ÆËã½á¹ûÓë·ÖÎö
È¡³õʼʱ¿ÌµÄµÈÀë×ÓÌåζȺ͵ÈЧ·øÉäζȾù Ϊ3keV,D-TÃܶÈΪ500g cm3,¼ÆËãD-TµÈÀë×ÓÌå ¾Û±äȼÉÕ¹ý³ÌÖеÈÀë×ÓÌåζȺ͵ÈЧ·øÉäζÈËæʱ ¼äµÄ±ä»¯,½á¹ûÈçͼ2Ëùʾ.´Óͼ2¿ÉÒÔ¿´³ö:ÔÚ³õ ʼ½×¶Î,µÈÀë×ÓÌåζÈTºÍµÈЧ·øÉäζÈTr ¼¸ºõÊÇ Ïà ͬ µÄ ;t > 0 .0 1 5 n s ºó , µÈ Àë ×Ó Ìå Π¶È ¿ª ʼ ÍÑ Àë µÈ Ð§·øÉäζȲ¢Ñ¸ËÙÉÏÉý, ´ïµ½·åÖµºóÓÖѸËÙϽµÏò µÈЧ·øÉäζȿ¿Â£, µÈЧ·øÉäζÈÔÚ´ËÆÚ¼äÒ²ÓÐÒ» ¸ö Ô¾ Éý ;t > 0 .0 3 n s ºó , Á½ Õß ½¥ Ç÷ Ò» Ö .´Ó ͼ 2 »¹ ¿É ÒÔ¿´³ö, ÔÚÕû¸öȼÉÕ¹ý³ÌÖÐ, µÈÀë×ÓÌåζÈʼÖÕ¸ßÓÚ µÈЧ·øÉäζÈ.
ͼ 2 µÈ Àë ×Ó Ìå Π¶È T ºÍ µÈ Ч ·ø Éä Π¶È T r Ëæ ʱ ¼ä t µÄ ±ä »¯ ³õ ʼʱ¿Ì T ºÍ T r ¶¼Îª 3 keV , D-T ÃܶÈΪ 500 g cm3
³öÏÖζÈÔ¾±äµÄÔ­ÒòÊÇÈȺ˷´Ó¦ËÙÂÊÔÚÒ»¶¨ÎÂ
¶ÈÖ®ºóËæζÈÉÏÉý¼±¾çÔö´ó, ¦ÁÁ£×Ó´óÁ¿²úÉú, µÈÀë
×ÓÌåÎÂ¶È T ѸËÙÉý¸ß²¢ÇÒÓÉÓÚÀ´²»¼°ºÍ¹â×Ó³ä·Ö
½»»»ÄÜÁ¿¶øÓëµÈЧ·øÉäÎÂ¶È T r ²úÉúÆ«Àë .È»¶øËæ×Å È¡³õʼʱ¿ÌµÈÀë×ÓÌåζȺ͵ÈЧ·øÉäζȾùΪ

1 2 ÆÚ Ê© ÑÐ ²© µÈ :¦Á Á£ ×Ó µÄ Âý »¯ ¹ý ³Ì ¶Ô D – T µÈ Àë ×Ó Ìå ¾Û ±ä ȼ ÉÕ µÄ Ó° Ïì
69 15
ͼ4 ¿¼ÂǦÁÁ£×ÓµÄÂý»¯¹ý³Ìºó,ȼÉÕ¹ý³ÌÖÐÿ¸ô50¸öʱ¼ä²½ ¼ÆËãµÃµ½µÄ fEC ÿ¸öʱ¼ä²½³¤Îª5¡Á10-6 ns
ͼ 5 µÈ Àë ×Ó Ìå Π¶È T Ëæ ʱ ¼ä t µÄ ±ä »¯ Ðé Ïß ÊÇ ¦ÁÁ£ ×Ó Ë² ʱ ³Á »ýÄÜÁ¿ÃèÊöϵĽá¹û, ʵÏßÊÇ¿¼ÂÇ ¦ÁÁ£×Ó Âý»¯¹ý³ÌºóµÄ ½á¹û .³õ ʼ ʱ ¿Ì µÈ Àë ×Ó Ìå Π¶È T ºÍ µÈ Ч ·ø Éä Π¶È T r ¶¼ Ϊ 3 k e V , D-T ÃÜ ¶È
Ϊ500 g cm3
3keV,¼ÆËãÁËÔÚ100¡ª1000gcm3 µÄÃܶȷ¶Î§ÄÚ,²» ͬÃܶÈÌõ¼þÏ嵀 D-T ¾Û±äµã»ðȼÉÕ¹ý³Ì, ±È½ÏÁË ¦Á Á£×ÓÄÜÁ¿Ë²Ê±³Á»ýÃèÊöºÍÖð²½³Á»ýÃèÊöϵÈÀë×ÓÌå ζȷåÖµµÄ³öÏÖʱ¿ÌºÍ·åÖµ´óС, ½á¹ûÈçͼ 6 ¡ªÍ¼ 9 Ëùʾ.
´Óͼ6¿ÉÒÔ¿´³ö,Ëæ×ųõʼʱ¿ÌÃܶȵÄÔö¼Ó,´ï µ½µã»ðÇø·åֵζÈËùÐèʱ¼äÔ½À´Ô½¶Ì, ¶øÇÒ ¦ÁÁ£×ÓÄÜ Á¿Ë²Ê±³Á»ýºÍÖð²½³Á»ýÁ½ÖÖÃèÊöµÄ²î±ðÒ²Ô½À´Ô½Ð¡ .
ͼ 7 ÏÔʾÁ˵ÈÀë×ÓÌåζȷåÖµ³öÏÖʱ¿ÌµÄÑÓ³Ù ¦¤tp ËæÃܶȦѵı仯.
¦¤ t p = t gp – t dp ,
ÆäÖÐ tgp Ϊ ¦ÁÁ£×ÓÄÜÁ¿Öð²½³Á»ýÃèÊöϵÈÀë×ÓÌåÎÂ
ͼ6 µÈÀë×ÓÌåζȷåÖµ³öÏÖµÄʱ¿Ìtp ËæÃܶȦѵı仯 ÐéÏß ÊǦÁÁ£×Ó˲ʱ³Á»ýÄÜÁ¿ÃèÊöϵĽá¹û,ʵÏßÊÇ¿¼ÂǦÁÁ£×ÓÂý»¯ ¹ý³ÌºóµÄ½á¹û.³õʼʱ¿ÌµÈÀë×ÓÌåÎÂ¶È T ºÍµÈЧ·øÉäÎÂ¶È Tr ¶¼ Ϊ3keV
ÏÂ, µÈÀë×ÓÌåζȷåÖµ³öÏÖµÄʱ¿Ì .´Óͼ 7 ¿ÉÒÔ¿´ ³ö, Ôڽϵ͵ijõʼζÈÏÂ, Öð²½³Á»ýÄÜÁ¿ÃèÊöµÄ·åÖµ ³öÏÖʱ¼äÑӳٽϴó, µ«ÃܶÈÉý¸ßºóÓмõСµÄÇ÷ÊÆ .
ͼ 7 ¿¼ÂÇ ¦ÁÁ£×ÓÂý»¯¹ý³Ìºó, µÈÀë×ÓÌåζȷåÖµ³öÏÖʱ¿ÌµÄÑÓ ³Ù¦¤tp ËæÃܶȦѵı仯
ͼ 8 ÏÔʾÁ˵ÈÀë×ÓÌåζȷåÖµ Tp ËæÃÜ¶È ¦ÑµÄ ±ä»¯.´Óͼ8¿ÉÒÔ¿´³ö,¦ÁÁ£×ÓÄÜÁ¿Ë²Ê±³Á»ýºÍÖð²½ ³Á»ýÁ½ÖÖÃèÊöϵÈÀë×ÓÌåζȵķåÖµ¶¼ËæÃܶÈÔö´ó ¶øÔö´ó, µ«µÈÀë×ÓÌåζȵķåÖµÔÚÖð²½³Á»ýÃèÊöÏ ʼÖÕ±È˲ʱ³Á»ýÃèÊöµÍ13keV×óÓÒ.
ͼ9 ÏÔʾÁ˵ÈÀë×ÓÌåζȷåÖµµÄÏà¶Ô²îÒì ¦¤TpTdpËæÃܶȦѵı仯.
¦¤Tp =Tdp -Tgp, ¶È·åÖµ³öÏÖµÄʱ¿Ì, tdp Ϊ¦ÁÁ£×ÓÄÜÁ¿Ë²Ê±³Á»ýÃèÊö ÆäÖÐ T gp ΪÖð²½³Á»ýÄÜÁ¿ÇéÐÎϵĵÈÀë×ÓÌåζȷå

6916
Îï Àí ѧ ±¨ 56¾í
ͼ8 µÈÀë×ÓÌåζȷåÖµTp ËæÃܶȦѵı仯 ʵÏßÊǦÁÁ£×ÓÖð ²½³Á»ýÄÜÁ¿µÄ½á¹û,ÐéÏßÊǦÁÁ£×Ó˲ʱ³Á»ýÄÜÁ¿µÄ½á¹û.³õʼΠ¶ÈΪ3 keV
Öµ, Tdp Ϊ˲ʱ³Á»ýÄÜÁ¿ÇéÐÎϵĵÈÀë×ÓÌåζȷå Öµ.´Óͼ9¿ÉÒÔ¿´³ö, ¦¤Tp Tdp ËæÃܶÈÉý¸ß¶ø½üËÆÏß ÐÔ¼õС.
ͼ 9 Öð²½³Á»ýÄÜÁ¿ºÍ˲ʱ³Á»ýÄÜÁ¿Á½ÖÖÃèÊöÏÂ, µÈÀë×ÓÌåÎÂ¶È ·åÖµÏà¶Ô²îÒ즤Tp TdpËæÃܶȦѵı仯 ³õʼζÈΪ3keV
[1] Gong X Y, Shi B R, Long Y X 2003 Acta Phys.Sin .52 896 ( in Chinese) [¹¨Ñ§Óࡢʯ±üÈÊ¡¢ÁúÓÀÐË2003ÎïÀíѧ±¨52896]
4.½á ÂÛ
´ÓÒÔÉϵļÆËã·ÖÎö¿ÉÒÔ¿´³ö,ÔÚ¾Û±äµã»ð¡¢È¼ÉÕ µÄÖ÷Ìå½×¶Î¿ÉÒÔ¿´×÷ÊǹÂÁ¢ÏµÍ³µÄµÈÀë×ÓÌåÌåϵ ÖÐ, ¿¼ÂÇ´øµçÁ£×ÓµÄÂý»¯¹ý³Ìºó, ÔÚÏàͬµÄ³õʼÌõ¼þ ϵÈÀë×ÓÌåζȷåµÄÉÏÉýÇ°ÑØ»á±ä»º, µÈÀë×ÓÌåΠ¶È·åÖµ³öÏÖµÄʱ¿ÌÓÐÑÓ³Ù, ÑÓ³ÙµÄʱ¼äΪÈô¸ÉƤÃë µ½¼¸Ê®Æ¤Ãë²»µÈ, Ôڽϵ͵ijõʼζȺÍÃܶÈÌõ¼þÏ ʱ¼äÑÓ³Ù¸ü´óЩ .µÈÀë×ÓÌåζȵķåÖµ±È˲ʱ³Á»ý ÄÜÁ¿ÃèÊöϵĽá¹û½µµÍÔ¼ 13 keV .
´Ó¼ÆËã½á¹û»¹¿ÉÒÔ¿´³ö, ÔÚÍâ½ç´´ÔìµÄζÈÃÜ ¶ÈÌõ¼þ×ã¹»ºÃʱ, D-T µÈÀë×ÓÌå²»ÐèÒª×ÔÉí¾Û±äÄÜ Ô´µÄά³Ö¾Í¿ÉÒÔ³ä·ÖȼÉÕ,ÕâÓëÊÇ·ñ¿¼ÂǦÁÁ£× Âý»¯¹ý³Ì¶Ô¾Û±äµã»ðºÍȼÉÕµÄÓ°Ïì²»´ó .µ«¸ù¾ÝÏÖ Óеļ¼Êõˮƽ, ÒªÔÚʵÑéÊÒ´´ÔìÕâÑùµÄÌõ¼þÊǷdz£ À§ÄѵÄ.ICFÑо¿µÄ½üÆÚÄ¿±êÊ×ÏÈÊÇÒª´ïµ½µã»ðÌõ ¼þ, È»ºóÀûÓà D-T µÈÀë×ÓÌå×ÔÉíµÄ¾Û±äÄÜÔ´Ìṩ½ø Ò»²½È¼ÉÕµÄÌõ¼þ, ÔÚÕâ¸ö¹ý³ÌÖÐ ¦ÁÁ£×ÓµÄÂý»¯¹ý³Ì ÊÇÓ¦µ±Ï¸ÖÂÑо¿µÄ .
ÔÚ ICF ÖÐ, ÓÉͨ³£Î¶ÈÃܶÈ״̬ѹËõµ½µã»ðµÄ ζÈÃܶÈ״̬´óÔ¼ÐèÒª20ns×óÓÒ[ 9] ,ÓÉÓÚ±¾Ä£Ðͼ٠ÉèµÈÀë×ÓÌåµÄÌå»ýÔÚȼÉյĹý³ÌÖв»·¢Éú±ä»¯, Ëù ÒÔÑ¡È¡µã»ðÌõ¼þ¸½½üµÄζÈÃܶÈÌõ¼þ×÷Ϊ³õʼÌõ ¼þ .ÕâÏ൱ÓÚÑ¡È¡ D-T СÇòѹËõ¹ý³ÌÄ©ÆÚ×÷Ϊ¼ÆË㠵ijõʼʱ¿Ì, Òò´Ë¼ÆËã½á¹û¸ø³öµÄÎÂÉýÇ°ÑؾßÓÐÏÖ ÊµÒâÒå, ¶øµ½ 104 eV Á¿¼¶ÒÔÉÏÔÚʵ¼ÊϵͳÖеķøÉä й©½«ºÜÑÏÖØ, ±¾Îĸø³öµÄ·åֵζȱȽÏÖ»Ìṩ¶¨ ÐԵIJο¼ .ÁíÍâ, ±¾ÎÄÄ£ÐÍûÓп¼ÂÇ¿ÉÄÜ´æÔڵĵç×Ó ºÍÀë×ÓµÄζȷÖÀë, ÔÚ½øÒ»²½µÄ¹¤×÷ÖÐÓ¦¼Ó¿¼ÂÇ, ÒÔ Æڵõ½¸üϸÖµĵã»ð¹ý³ÌͼÏñ .Õâ¶ÔÓÚÎÒÃǼÓÉî¶Ô ¾Û±ä¹ý³ÌµÄÎïÀíÈÏʶÊǺÜÓÐÒâÒåµÄ .
[6] [2] LindlJD,McCroryRL,CampbellEM1992Phys.Today4532 [7]
³£ÌúÇ¿ ¡¢ÐíÁÖ±¦ ¡¢°²µÂÁзò N E 2001 ÎïÀíѧ±¨ 50 921]
Evans F 1973 Phys.Fluids 16 1011
Sivukhin D V 1966 Reviews of Plasma Physics ( Vol.4) ( New York: Consultants Bureau)
Yu M 1996 Selected Papers of Yu Min ( Beijing :Institute of Applied Physics and Computational Mathematics) pp102, 105 ( in Chinese)
[ ÓÚ Ãô 1996 ÓÚÃôÂÛÎļ¯(±±¾©:±±¾©Ó¦ÓÃÎïÀíÓë¼ÆËãÊýѧ
[3] ZengXC,ZhangLF,GaoYM,LiYS1997HighPowerLaserand Particle Beams 9 233 ( in Chinese) [ ÔøÏȲŠ¡¢ÕÅÀû·¢ ¡¢¸ßÒ«Ã÷¡¢Àî
[ 8]
Éú 1997 Ç¿¼¤¹âÓëÁ£×ÓÊø 9 233]
[4] Atzeni S 1987 Plasma Phys .Control .Fusion 29 1535
[5] ZhangJT,HeB,HeXT,ChangTQ,XuLB,AndereevNE2001 Ñо¿Ëù)µÚ102,105Ò³]
Acta Phys.Sin .50921 (in Chinese) [ ÕżÒÌ©¡¢ºÎ ±ó¡¢ºØÏÍÍÁ¡¢ [ 9] Atzeni S, Meyer-ter-Vehn J 2003 Inertial Fusion:Beam Plasma

1 2 ÆÚ
Ê© ÑÐ ²© µÈ :¦Á Á£ ×Ó µÄ Âý »¯ ¹ý ³Ì ¶Ô D – T µÈ Àë ×Ó Ìå ¾Û ±ä ȼ ÉÕ µÄ Ó° Ïì
69 17
[ 10]
Interaction Hydrodynamics Dense Plasma Physics ( Oxford: Clarendon Press) pp13¡ª19,83¡ª85, 410¡ª419
Zhang J,Chang T Q 2004 Fundaments of the Target PhysicsforLaser Fusion ( Beijing :National Defence Industry Press) pp119 ¡ª126 ( in
[ 11]
Chinese) [ ÕÅ ¾ù¡¢³£ÌúÇ¿ 2004 ¼¤¹âºË¾Û±ä°ÐÎïÀí»ù´¡( ±± ¾©:¹ú·À¹¤Òµ³ö°æÉç)µÚ119¡ª126Ò³]
Andre G, Jean-Pierre H 1999 Phys .Lett .A 253 119
Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma*
Shi Yan-Bo1) Ying Yang-Jun2) Li Jin-Hong2)
1) ( Graduate Department of China Academy of Engineering Physics, Beijing 100088, China ) 2) ( Institute of Applied Physics and Computational Mathematics, Beijing 100088, China )
( Received 8 March 2007 ;revised manuscript received 8 May 2007)
Abstract
A dual temperature thermonuclear burn model is presented, based on which the variation of the particle temperature,
effective radiation temperature and the particle number density has been calculated for burn processes under various initial D-T density conditions .In comparison with the approximation that alpha particles deposit their energy instantaneously, the alpha particle slowing down effect during ignition has been studied .It was found that the peak of particle temperature delays and was about 13 keV lower than that in the instantaneous case when the alpha particle slowing down effect was considered .Calculation also showed that in the case of lower initial temperature and density, the alpha particle slowing down effect is more remarkable .
Keywords:alpha particle, thermonuclear burn, energy deposition, slowing-down effect PACC:2852, 2852C, 2852J
*Project supported by the Advanced Research Foundation for National Defence Science and Technology of China ( Grant No.42601) . E – m a i l :y a n b o s c h @ g m a i l .c o m