程序代写代做代考 Impress

Impress

CMPSC-F353
Architecture of Comp Systems

Sequential Circuits

Flip-Flops
Flip-Flop
The storage elements employed in clocked sequential circuit
A binary cell capable of storing one bit of information

SR(Set/Reset) F/F

Combinational Circuit = Gate
Sequential Circuit = Gate + F/F

D(Data) F/F

“no change” condition: Q(t+1)=D
: 1) Disable Clock
2) Feedback output into input

JK(Jack/King) F/F

JK F/F is a refinement of the SR F/F
The indeterminate condition of the SR type is defined in complement

Flip-Flops

T(Toggle) F/F

T=1(J=K=1), T=0(J=K=0) JK F/F
Q(t+1)= Q(t)  T

Edge-triggered Flip-Flops

M..Morris Mano. 1993. Computer System Architecture (3rd ed.). Pearson, Page 26

Excitation Table
Required input combinations for a given change of state
Present State  Next State

1 : Clear to 0
0 : No change
0 : Set to 1
1 : Complement
Don’t Care
Excitation Table

Sequential Circuits
A sequential circuit is an interconnection of F/F and Gate
Clocked synchronous sequential circuit

Combinational Circuit = Gate
Sequential Circuit = Gate + F/F
Combinational
Circuit
Flip-Flops

Input
Output
Clock

Sequential Circuits Example

Flip-Flop Input Equation
Boolean expression for F/F input
Example:
Input Equation
DA = Ax + Bx, DB = A’x
Output Equation
y = Ax’ + Bx’

x

DA

DB

A

A’

B

B’

Clock

y

State Table
Presents state, input, next state, output

State Diagram
Graphical representation of state table
Circle(state), Line(transition), I/O(input/output)

State Table and State Diagram

Binary Counter

Excitation Table(2 bit counter = 2 F/F)

x=1: 00, 01, 10, 11,
00, 01, …..
x=0: no change

State Diagram:
4 state (00, 01, 10, 11)

Next State =
Output

Sequential Circuit Design Example
11
10

A
B

x
1
1

X X
X X
Map for simplification
Input variable: A, B, x
A
B

x
A
B

x
A
B

x

JA

KB

KA

JB

JA=Bx

KB=x

JB=x

KA=Bx
X X X X
X X X X
X X
X X
1
1

1
1

Logic Diagram
Sequential Circuit Design Example

Sequential Circuit Design Procedure
Behavior of circuit as a state diagram
Tells number of states, flip flops, inputs,…
Excitation table
Combinational Circuit Design to get flip flop input equations
Truth table is part of the excitation table
Draw the circuit and make connect components
1. The Problem is stated
2. I/O variables are assigned
3. Truth table(I/O relation)
4. Simplified Boolean Function
5. Logic circuit diagram
Sequential Circuit Design Procedure

Digital Components
Decoder
A combinational circuit that converts binary information from the n coded inputs to a maximum of 2n unique outputs
n-to-m line decoder = n x m decoder
n inputs, m outputs
If the n-bit coded information has unused bit combinations, the decoder may have less than 2n outputs
m  2n

3-to-8 Decoder
3-to-8 Decoder
Logic Diagram :
Truth Table :
Commercial decoders
include Enable Input(E)

A2
A1
A0
D0
D1
D2
D3
D4
D5
D6
D7
Enable(E)

NAND Gate Decoder
Constructed with NAND instead of AND gates
Decoder outputs in their complement forms

NAND Gate Decoder

M..Morris Mano. 1993. Computer System Architecture (3rd ed.). Pearson, Page 45

3 X 8 Decoder constructed with two 2 X 4 Decoder
Enable inputs are a convenient way to interconnect circuits

A0

A1

A2
D0

D1

D2

D3

D4

D5

D6

D7
A 3-to-8 Decoder constructed with two with 2-to-4 Decoder
Decoder Expansion

What’s next?
HW1 is due Monday 9/16

Further Reading:
Chapter 1:
1.7 to the end of chapter 1
Chapter 2:
Section 2.2

Sheet1
S R Q(t+1)
0 0 Q(t) no change
0 1 0 clear to 0
1 0 1 set to 1
1 1 ? Indeterminate

Sheet1
D Q(t+1)
0 0 clear to 0
1 1 set to 1

Sheet1
J K Q(t+1)
0 0 Q(t) no change
0 1 0 clear to 0
1 0 1 set to 1
1 1 Q(t)’ Complement

T�

Sheet1
T Q(t+1)
0 Q(t) no change
1 Q'(t) Complement

Q(t) Q(t+1) S R
0 00 X
0 11 0
1 00 1
1 1X 0
SR F/F

Sheet1
SR F/F
Q(t) Q(t+1) S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

Sheet1
D F/F
Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

Sheet1
JK F/F
Q(t) Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Sheet1
T F/F
Q(t) Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

Present State
Input
Next State
Output
A B xA By
0 000 00
0 010 10
0 100 01
0 111 10
1 000 01
1 011 00
1 100 01
1 111 00

Sheet1
Present State Input Next State Output
A B x A B y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

00�
01�
10�
11�
0/0�
1/0�
1/0�
0/1�
0/1�
1/0�
1/0�
0/1�

00�
01�
10�
11�
x=0�
x=0�
x=1�
x=0�
x=1�

x=1�
x=1�

x=0�
0/00�
1/01�

Sheet1
Present State Input Next State F/F Input Equ.
A B x A B JA KA JB KB
0 0 0 0 0 0 x 0 x
0 0 1 0 1 0 x 1 x
0 1 0 0 1 0 x x 0
0 1 1 1 0 1 x x 1
1 0 0 1 0 x 0 0 x
1 0 1 1 1 x 0 1 x
1 1 0 1 1 x 0 x 0
1 1 1 0 0 x 1 x 1

Sheet1
JK F/F
Q(t) Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Sheet1
0 1 3 2
4 5 7 6

Sheet1
0 1 3 2
4 5 7 6

Sheet1
0 1 3 2
4 5 7 6

Sheet1
0 1 3 2
4 5 7 6


Clock�
x�
B�
A�

Sheet1
Enable Inputs Outputs
E A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
0 x x x 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0


2 X 4
Decoder�
2�
0�
2�
1�
E�

2 X 4
Decoder�
2�
0�
2�
1�
E�