程序代写代做代考 cache python Dropout-checkpoint

Dropout-checkpoint

Dropout¶
Dropout [1] is a technique for regularizing neural networks by randomly setting some features to zero during the forward pass. In this exercise you will implement a dropout layer and modify your fully-connected network to optionally use dropout.

[1] Geoffrey E. Hinton et al, “Improving neural networks by preventing co-adaptation of feature detectors”, arXiv 2012

In [ ]:

# As usual, a bit of setup

import time
import numpy as np
import matplotlib.pyplot as plt
from cs231n.classifiers.fc_net import *
from cs231n.data_utils import get_CIFAR10_data
from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array
from cs231n.solver import Solver

%matplotlib inline
plt.rcParams[‘figure.figsize’] = (10.0, 8.0) # set default size of plots
plt.rcParams[‘image.interpolation’] = ‘nearest’
plt.rcParams[‘image.cmap’] = ‘gray’

# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

def rel_error(x, y):
“”” returns relative error “””
return np.max(np.abs(x – y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))

In [ ]:

# Load the (preprocessed) CIFAR10 data.

data = get_CIFAR10_data()
for k, v in data.iteritems():
print ‘%s: ‘ % k, v.shape

Dropout forward pass¶
In the file cs231n/layers.py, implement the forward pass for dropout. Since dropout behaves differently during training and testing, make sure to implement the operation for both modes.

Once you have done so, run the cell below to test your implementation.

In [ ]:

x = np.random.randn(500, 500) + 10

for p in [0.3, 0.6, 0.75]:
out, _ = dropout_forward(x, {‘mode’: ‘train’, ‘p’: p})
out_test, _ = dropout_forward(x, {‘mode’: ‘test’, ‘p’: p})

print ‘Running tests with p = ‘, p
print ‘Mean of input: ‘, x.mean()
print ‘Mean of train-time output: ‘, out.mean()
print ‘Mean of test-time output: ‘, out_test.mean()
print ‘Fraction of train-time output set to zero: ‘, (out == 0).mean()
print ‘Fraction of test-time output set to zero: ‘, (out_test == 0).mean()
print

Dropout backward pass¶
In the file cs231n/layers.py, implement the backward pass for dropout. After doing so, run the following cell to numerically gradient-check your implementation.

In [ ]:

x = np.random.randn(10, 10) + 10
dout = np.random.randn(*x.shape)

dropout_param = {‘mode’: ‘train’, ‘p’: 0.8, ‘seed’: 123}
out, cache = dropout_forward(x, dropout_param)
dx = dropout_backward(dout, cache)
dx_num = eval_numerical_gradient_array(lambda xx: dropout_forward(xx, dropout_param)[0], x, dout)

print ‘dx relative error: ‘, rel_error(dx, dx_num)

Fully-connected nets with Dropout¶
In the file cs231n/classifiers/fc_net.py, modify your implementation to use dropout. Specificially, if the constructor the the net receives a nonzero value for the dropout parameter, then the net should add dropout immediately after every ReLU nonlinearity. After doing so, run the following to numerically gradient-check your implementation.

In [ ]:

N, D, H1, H2, C = 2, 15, 20, 30, 10
X = np.random.randn(N, D)
y = np.random.randint(C, size=(N,))

for dropout in [0, 0.25, 0.5]:
print ‘Running check with dropout = ‘, dropout
model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C,
weight_scale=5e-2, dtype=np.float64,
dropout=dropout, seed=123)

loss, grads = model.loss(X, y)
print ‘Initial loss: ‘, loss

for name in sorted(grads):
f = lambda _: model.loss(X, y)[0]
grad_num = eval_numerical_gradient(f, model.params[name], verbose=False, h=1e-5)
print ‘%s relative error: %.2e’ % (name, rel_error(grad_num, grads[name]))
print

Regularization experiment¶
As an experiment, we will train a pair of two-layer networks on 500 training examples: one will use no dropout, and one will use a dropout probability of 0.75. We will then visualize the training and validation accuracies of the two networks over time.

In [ ]:

# Train two identical nets, one with dropout and one without

num_train = 500
small_data = {
‘X_train’: data[‘X_train’][:num_train],
‘y_train’: data[‘y_train’][:num_train],
‘X_val’: data[‘X_val’],
‘y_val’: data[‘y_val’],
}

solvers = {}
dropout_choices = [0, 0.75]
for dropout in dropout_choices:
model = FullyConnectedNet([500], dropout=dropout)
print dropout

solver = Solver(model, small_data,
num_epochs=25, batch_size=100,
update_rule=’adam’,
optim_config={
‘learning_rate’: 5e-4,
},
verbose=True, print_every=100)
solver.train()
solvers[dropout] = solver

In [ ]:

# Plot train and validation accuracies of the two models

train_accs = []
val_accs = []
for dropout in dropout_choices:
solver = solvers[dropout]
train_accs.append(solver.train_acc_history[-1])
val_accs.append(solver.val_acc_history[-1])

plt.subplot(3, 1, 1)
for dropout in dropout_choices:
plt.plot(solvers[dropout].train_acc_history, ‘o’, label=’%.2f dropout’ % dropout)
plt.title(‘Train accuracy’)
plt.xlabel(‘Epoch’)
plt.ylabel(‘Accuracy’)
plt.legend(ncol=2, loc=’lower right’)

plt.subplot(3, 1, 2)
for dropout in dropout_choices:
plt.plot(solvers[dropout].val_acc_history, ‘o’, label=’%.2f dropout’ % dropout)
plt.title(‘Val accuracy’)
plt.xlabel(‘Epoch’)
plt.ylabel(‘Accuracy’)
plt.legend(ncol=2, loc=’lower right’)

plt.gcf().set_size_inches(15, 15)
plt.show()

Question¶
Explain what you see in this experiment. What does it suggest about dropout?

Answer¶