程序代写代做代考 database algorithm python decision tree In [107]:

In [107]:
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = “all”

%matplotlib inline

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style(“whitegrid”)
sns.set_context(“notebook”)
#sns.set_context(“poster”)
In [108]:
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score

from sklearn import metrics

from sklearn import preprocessing

Basic Regression Algorithms
Here we review seven of the most well-known regression algorithms.
Four variations of linear regression:
• Logistic Regression.
• Ridge Linear Regression.
• Lasso Linear Regression.
• Elastic Net Regression.
and three non-linear that we already know as classification algorithms:
• k-nn – k-Nearest Neighbors.
• CART – Classification and Regression Trees.
• SVM – Support Vector Machines.
Again we will compare the result and plot it, trying to address the question of which algorithm works better with this dataset.
For the dataset, we will use a well-known one that we previously used: the Boston Housing Price with a 10-fold cross-validation. Obviously in this case the objective is to approximate the pricing.
As a metric we will use the mean squarred error. Please note that scikit-learn follows a convention that imposes all metrics to be sorted in ascending order, therefore the larger is always better. In order to follow this convention, mean squarred error is expressed with a negative sign, so larger is better (in this case 0).



In [109]:
# Load the Boston dataset and separate input and output components

from numpy import set_printoptions
set_printoptions(precision=3)

filename=”HousingData.csv”
b_housing=pd.read_csv(filename)
b_housing.head()

b_housing.fillna(0,inplace=True) # we have NaN

# First we separate into input and output components
array=b_housing.values
X=array[:,0:13]
y=array[:,13]
np.set_printoptions(suppress=True)
X
pd.DataFrame(X).head()

# Create the DataFrames for plotting
resall=pd.DataFrame()
res_w1=pd.DataFrame()
Out[109]:

CRIM
ZN
INDUS
CHAS
NOX
RM
AGE
DIS
RAD
TAX
PTRATIO
B
LSTAT
MEDV
0
0.00632
18.0
2.31
0.0
0.538
6.575
65.2
4.0900
1
296
15.3
396.90
4.98
24.0
1
0.02731
0.0
7.07
0.0
0.469
6.421
78.9
4.9671
2
242
17.8
396.90
9.14
21.6
2
0.02729
0.0
7.07
0.0
0.469
7.185
61.1
4.9671
2
242
17.8
392.83
4.03
34.7
3
0.03237
0.0
2.18
0.0
0.458
6.998
45.8
6.0622
3
222
18.7
394.63
2.94
33.4
4
0.06905
0.0
2.18
0.0
0.458
7.147
54.2
6.0622
3
222
18.7
396.90
NaN
36.2
Out[109]:
array([[ 0.006, 18. , 2.31 , …, 15.3 , 396.9 , 4.98 ],
[ 0.027, 0. , 7.07 , …, 17.8 , 396.9 , 9.14 ],
[ 0.027, 0. , 7.07 , …, 17.8 , 392.83 , 4.03 ],
…,
[ 0.061, 0. , 11.93 , …, 21. , 396.9 , 5.64 ],
[ 0.11 , 0. , 11.93 , …, 21. , 393.45 , 6.48 ],
[ 0.047, 0. , 11.93 , …, 21. , 396.9 , 7.88 ]])
Out[109]:

0
1
2
3
4
5
6
7
8
9
10
11
12
0
0.00632
18.0
2.31
0.0
0.538
6.575
65.2
4.0900
1.0
296.0
15.3
396.90
4.98
1
0.02731
0.0
7.07
0.0
0.469
6.421
78.9
4.9671
2.0
242.0
17.8
396.90
9.14
2
0.02729
0.0
7.07
0.0
0.469
7.185
61.1
4.9671
2.0
242.0
17.8
392.83
4.03
3
0.03237
0.0
2.18
0.0
0.458
6.998
45.8
6.0622
3.0
222.0
18.7
394.63
2.94
4
0.06905
0.0
2.18
0.0
0.458
7.147
54.2
6.0622
3.0
222.0
18.7
396.90
0.00

Linear Regression¶
You all are probably familiar with linear regression!
Just a small reminder, it assumes a Gaussian distribution and that all variables are relevant. It also assumes that variables are not highly correlated (a problem called collinearity).
We will discuss both the statistical approach to Linear Regression and the Machine Learning approach. You will see that in the statistical approach we seek to fit a model to an existing set of data with the objective to find the components that explain this fit. In contrast, in machine learning we aim to build a model that is able to work well and predict with unknown sets of data.
We will use the LinearRegression class.
In [110]:
# Linear Regression as used in statistics and social science
# we use statsmodel

import statsmodels.api as sm

X_pd=b_housing.copy()
X_pd=X_pd.drop([“MEDV”],axis=1)
y_pd=b_housing[“MEDV”]

X_pd=sm.add_constant(X_pd)
model = sm.OLS(y_pd,X_pd).fit()

model.summary()

/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2495: FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
return ptp(axis=axis, out=out, **kwargs)
Out[110]:
OLS Regression Results
Dep. Variable:
MEDV
R-squared:
0.727
Model:
OLS
Adj. R-squared:
0.720
Method:
Least Squares
F-statistic:
100.7
Date:
Tue, 12 Nov 2019
Prob (F-statistic):
2.06e-129
Time:
01:37:01
Log-Likelihood:
-1511.9
No. Observations:
506
AIC:
3052.
Df Residuals:
492
BIC:
3111.
Df Model:
13

Covariance Type:
nonrobust

coef
std err
t
P>|t|
[0.025
0.975]
const
33.2336
5.204
6.387
0.000
23.009
43.458
CRIM
-0.1162
0.033
-3.547
0.000
-0.181
-0.052
ZN
0.0429
0.014
3.136
0.002
0.016
0.070
INDUS
-0.0315
0.052
-0.601
0.548
-0.134
0.071
CHAS
3.1311
0.892
3.510
0.000
1.378
4.884
NOX
-17.3454
3.727
-4.654
0.000
-24.669
-10.022
RM
4.3036
0.412
10.458
0.000
3.495
5.112
AGE
-0.0151
0.010
-1.494
0.136
-0.035
0.005
DIS
-1.4844
0.196
-7.592
0.000
-1.868
-1.100
RAD
0.2685
0.067
3.998
0.000
0.137
0.400
TAX
-0.0109
0.004
-2.874
0.004
-0.018
-0.003
PTRATIO
-0.9815
0.134
-7.348
0.000
-1.244
-0.719
B
0.0094
0.003
3.373
0.001
0.004
0.015
LSTAT
-0.3918
0.044
-8.817
0.000
-0.479
-0.304
Omnibus:
188.045
Durbin-Watson:
1.032
Prob(Omnibus):
0.000
Jarque-Bera (JB):
1006.627
Skew:
1.541
Prob(JB):
2.59e-219
Kurtosis:
9.184
Cond. No.
1.49e+04

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.49e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
In [111]:
# Linear Regression with scikit-learn

from sklearn.linear_model import LinearRegression

kfold=KFold(n_splits=10, random_state=7)

model=LinearRegression()
scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’Linear Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”Lin”

resall=pd.concat([resall,res_w1], ignore_index=True)

# Now lets use it in the same way than the statsmodel

model_x=LinearRegression()
model_x.fit(X,y)
print(f’Intercept {model_x.intercept_:.4f}’)
print(“Coefficients “,model_x.coef_)

y_pred_x=model_x.predict(X)

print(f’MAE – Mean Absolute Error {metrics.mean_absolute_error(y, y_pred_x):.3f}’)
print(f’MSE – Mean Square Error {metrics.mean_squared_error(y, y_pred_x):.3f}’)
print(f’R2 {metrics.r2_score(y, y_pred_x):.3f}’)

Linear Regression – MSE -34.090 std 44.046
Out[111]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Intercept 33.2336
Coefficients [ -0.116 0.043 -0.032 3.131 -17.345 4.304 -0.015 -1.484 0.269
-0.011 -0.981 0.009 -0.392]
MAE – Mean Absolute Error 3.308
MSE – Mean Square Error 23.058
R2 0.727

Ridge Regression¶
The Ridge regession corresponds to modern linear regression algorithms that aim to be more robust to outliers.
In this case the loss function is modified to minimize the complexity of the model measured as the sum squared value of the coefficietn values (also called the L2-norm).
We will use the Ridge class.
In [112]:
# Ridge Regression

from sklearn.linear_model import Ridge

kfold=KFold(n_splits=10, random_state=7)

model=Ridge()
scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’Ridge Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”Ridge”

resall=pd.concat([resall,res_w1], ignore_index=True)

Ridge Regression – MSE -33.384 std 44.258

Lasso Regression¶
Again is a modern regression algorithm that aims a reducing the weight of outliers.
In this case the loss function is modified measuring the complexity of the model as the sum absolute value of the coefficients values (also called the L1-norm).
You can construct a Lasso model using the Lasso class.
In [113]:
# Lasso Regression

from sklearn.linear_model import Lasso

kfold=KFold(n_splits=10, random_state=7)

model=Lasso()
scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’Lasso Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”Lasso”

resall=pd.concat([resall,res_w1], ignore_index=True)

Lasso Regression – MSE -35.161 std 32.383

ElasticNet Regression¶
The ElasticNet Regression combines both the Ridge and the Lasso.
It penalizes the model using both the L1-norm and the L2-norm.
You can construct an ElasticNet model using the ElasticNet class.
In [114]:
# ElasticNet Regression

from sklearn.linear_model import ElasticNet

kfold=KFold(n_splits=10, random_state=7)

model=ElasticNet()
scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’ElasticNet Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”ElasticNet”

resall=pd.concat([resall,res_w1], ignore_index=True)

ElasticNet Regression – MSE -33.109 std 26.963

k-nn k-Nearest Neighbors¶
k-Nearerst Neighbors is a non-linear machine learning algorithm that uses distance metrics to find the most similar k-elements, taking the mean or median outcome of the neighbors as the prediction.
One interesting advantage of this algorithm is that we can choose a different metric for calculating the distance. The default metric is Minkowski, equivalent to euclidean (with p=2). It can be easily transformed to Mnahattan distance with p=1.
For constructing a knn model for regression you must use the KNeighorsRegressor class.
In [115]:
# KNN Regression

from sklearn.neighbors import KNeighborsRegressor

kfold=KFold(n_splits=10, random_state=7)

model=KNeighborsRegressor()
scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’KNN Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”KNN”

resall=pd.concat([resall,res_w1], ignore_index=True)

KNN Regression – MSE -97.175 std 50.572

CART – Classification and Regression Trees¶
Cart builds a binary tree from the data where the splits are chosen greedly evaluating all the attributes in order to minimize a cost function. The default cost metric for regression decision trees is the mean squared error, specified in the criterion parameter.
For CART we will use the DecisionTreeRegressor class.
In [116]:
# Decision Trees Regression

# Please observe that in this case repeating the algorithm gives different results
# scaling doesn’t matter in this case – you get different results but inside the range

from sklearn.tree import DecisionTreeRegressor

kfold=KFold(n_splits=10, random_state=7)

model=DecisionTreeRegressor()
scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’Decision Trees Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”Trees”

resall=pd.concat([resall,res_w1], ignore_index=True)

Decision Trees Regression – MSE -38.452 std 30.760

Support Vector Machines¶
Support vector machines seeks a line that separates best two classes. The data instances that are closest to this line are, better separating the classes, are called support vectors.
Support Vector Machines have the advantage that you can change the kernel function to use. Radial basis function is used by default, a pretty powerful one.
You can construct a SVM model for regression with the SVR class.
In [117]:
# SVM – Support Vector Machines

from sklearn.svm import SVR

kfold=KFold(n_splits=10, random_state=7)

model=SVR(gamma=”auto”)

scoring = “neg_mean_squared_error”

results=cross_val_score(model, X, y, cv=kfold, scoring=scoring)

print(f’SVM Regression – MSE {results.mean():.3f} std {results.std():.3f}’)

res_w1[“Res”]=results
res_w1[“Type”]=”SVM”

resall=pd.concat([resall,res_w1], ignore_index=True)

SVM Regression – MSE -91.129 std 71.147

Algorithm Comparison¶
In [118]:
# Now let’s compare them all

plt.figure(figsize=(15,9))

sns.boxplot(data=resall, x=”Type”, y=”Res”)

sns.swarmplot(data=resall, x=”Type”, y=”Res”, color=”royalblue”)
Out[118]:


Out[118]:

Out[118]:


In [ ]:

In [ ]:

In [ ]:

Mission 1
a) Let’s predict movie revenue using the Movie Database in Kaggle https://www.kaggle.com/c/tmdb-box-office-prediction 



In [4]:
import pandas as pd
pd.read_csv(“movie.csv”)
Out[4]:

id
belongs_to_collection
budget
genres
homepage
imdb_id
original_language
original_title
overview
popularity

production_countries
release_date
runtime
spoken_languages
status
tagline
title
Keywords
cast
crew
0
3001
[{‘id’: 34055, ‘name’: ‘Pokémon Collection’, ‘…
0
[{‘id’: 12, ‘name’: ‘Adventure’}, {‘id’: 16, ‘…
http://www.pokemon.com/us/movies/movie-pokemon…
tt1226251
ja
ディアルガVSパルキアVSダークライ
Ash and friends (this time accompanied by newc…
3.851534

[{‘iso_3166_1’: ‘JP’, ‘name’: ‘Japan’}, {‘iso_…
7/14/07
90.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
Somewhere Between Time & Space… A Legend Is …
Pokémon: The Rise of Darkrai
[{‘id’: 11451, ‘name’: ‘pok√©mon’}, {‘id’: 115…
[{‘cast_id’: 3, ‘character’: ‘Tonio’, ‘credit_…
[{‘credit_id’: ’52fe44e7c3a368484e03d683′, ‘de…
1
3002
NaN
88000
[{‘id’: 27, ‘name’: ‘Horror’}, {‘id’: 878, ‘na…
NaN
tt0051380
en
Attack of the 50 Foot Woman
When an abused wife grows to giant size becaus…
3.559789

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
5/19/58
65.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
A titanic beauty spreads a macabre wave of hor…
Attack of the 50 Foot Woman
[{‘id’: 9748, ‘name’: ‘revenge’}, {‘id’: 9951,…
[{‘cast_id’: 2, ‘character’: ‘Nancy Fowler Arc…
[{‘credit_id’: ‘55807805c3a3685b1300060b’, ‘de…
2
3003
NaN
0
[{‘id’: 35, ‘name’: ‘Comedy’}, {‘id’: 10749, ‘…
NaN
tt0118556
en
Addicted to Love
Good-natured astronomer Sam is devastated when…
8.085194

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
5/23/97
100.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
A Comedy About Lost Loves And Last Laughs
Addicted to Love
[{‘id’: 931, ‘name’: ‘jealousy’}, {‘id’: 9673,…
[{‘cast_id’: 11, ‘character’: ‘Maggie’, ‘credi…
[{‘credit_id’: ’52fe4330c3a36847f8041367′, ‘de…
3
3004
NaN
6800000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10752, ‘n…
http://www.sonyclassics.com/incendies/
tt1255953
fr
Incendies
A mother’s last wishes send twins Jeanne and S…
8.596012

[{‘iso_3166_1’: ‘CA’, ‘name’: ‘Canada’}, {‘iso…
9/4/10
130.0
[{‘iso_639_1’: ‘fr’, ‘name’: ‘Français’}, {‘is…
Released
The search began at the opening of their mothe…
Incendies
[{‘id’: 378, ‘name’: ‘prison’}, {‘id’: 539, ‘n…
[{‘cast_id’: 6, ‘character’: ‘Nawal’, ‘credit_…
[{‘credit_id’: ‘56478092c3a36826140043af’, ‘de…
4
3005
NaN
2000000
[{‘id’: 36, ‘name’: ‘History’}, {‘id’: 99, ‘na…
NaN
tt0418753
en
Inside Deep Throat
In 1972, a seemingly typical shoestring budget…
3.217680

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
2/11/05
92.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
It was filmed in 6 days for 25 thousand dollar…
Inside Deep Throat
[{‘id’: 279, ‘name’: ‘usa’}, {‘id’: 1228, ‘nam…
[{‘cast_id’: 1, ‘character’: ‘Narrator (voice)…
[{‘credit_id’: ’52fe44ce9251416c75041967′, ‘de…
5
3006
NaN
0
[{‘id’: 35, ‘name’: ‘Comedy’}, {‘id’: 18, ‘nam…
NaN
tt0120238
en
SubUrbia
A group of suburban teenagers try to support e…
8.679350

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
2/7/96
121.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
NaN
SubUrbia
[{‘id’: 10183, ‘name’: ‘independent film’}]
[{‘cast_id’: 4, ‘character’: ‘Pony’, ‘credit_i…
[{‘credit_id’: ’52fe4576c3a368484e05c901′, ‘de…
6
3007
NaN
0
[{‘id’: 10749, ‘name’: ‘Romance’}, {‘id’: 18, …
NaN
tt1517177
de
Drei
Hanna and Simon are in a 20 year marriage with…
4.898882

[{‘iso_3166_1’: ‘DE’, ‘name’: ‘Germany’}]
12/23/10
119.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
Imagine the possibilities.
Three
[{‘id’: 572, ‘name’: ‘sex’}, {‘id’: 154937, ‘n…
[{‘cast_id’: 2, ‘character’: ‘Hanna’, ‘credit_…
[{‘credit_id’: ’52fe485bc3a36847f816358d’, ‘de…
7
3008
NaN
30000000
[{‘id’: 16, ‘name’: ‘Animation’}, {‘id’: 10751…
http://www.tigger.com
tt0220099
en
The Tigger Movie
As it happens, everybody – Pooh, Piglet, Eeyor…
7.023414

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
2/11/00
77.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
NaN
The Tigger Movie
[{‘id’: 3905, ‘name’: ‘owl’}, {‘id’: 4144, ‘na…
[{‘cast_id’: 2, ‘character’: ‘Tigger / Winnie …
[{‘credit_id’: ‘59121da0c3a3686519043247’, ‘de…
8
3009
NaN
16500000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10749, ‘n…
http://becomingjane-themovie.com/
tt0416508
en
Becoming Jane
A biographical portrait of a pre-fame Jane Aus…
7.829737

[{‘iso_3166_1’: ‘GB’, ‘name’: ‘United Kingdom’…
3/2/07
120.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
Her own life is her greatest inspiration.
Becoming Jane
[{‘id’: 392, ‘name’: ‘england’}, {‘id’: 934, ‘…
[{‘cast_id’: 10, ‘character’: ‘Jane Austen’, ‘…
[{‘credit_id’: ‘53569575c3a3687f54000051’, ‘de…
9
3010
[{‘id’: 10194, ‘name’: ‘Toy Story Collection’,…
90000000
[{‘id’: 16, ‘name’: ‘Animation’}, {‘id’: 35, ‘…
http://toystory.disney.com/toy-story-2
tt0120363
en
Toy Story 2
Andy heads off to Cowboy Camp, leaving his toy…
17.547693

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
10/30/99
92.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
The toys are back!
Toy Story 2
[{‘id’: 2598, ‘name’: ‘museum’}, {‘id’: 3246, …
[{‘cast_id’: 18, ‘character’: ‘Woody (voice)’,…
[{‘credit_id’: ’52fe4284c3a36847f8025073′, ‘de…
10
3011
NaN
2000000
[{‘id’: 53, ‘name’: ‘Thriller’}, {‘id’: 27, ‘n…
NaN
tt0419663
en
Cruel World
Millions witnessed Philip Markham’s public hum…
0.262437

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/1/05
88.0
[{‘iso_639_1’: ‘ru’, ‘name’: ‘Pусский’}, {‘iso…
Released
When You Get Voted Off This Reality Show… It…
Cruel World
[{‘id’: 2136, ‘name’: ‘television’}, {‘id’: 30…
[{‘cast_id’: 1, ‘character’: ‘Philip Markham’,…
[{‘credit_id’: ’52fe4680c3a36847f81028a9′, ‘de…
11
3012
NaN
0
[{‘id’: 18, ‘name’: ‘Drama’}]
NaN
tt3655522
fr
Bande de filles
Oppressed by her family setting, dead-end scho…
4.220318

[{‘iso_3166_1’: ‘FR’, ‘name’: ‘France’}]
6/27/14
112.0
[{‘iso_639_1’: ‘fr’, ‘name’: ‘Français’}]
Released
NaN
Girlhood
[{‘id’: 12990, ‘name’: ‘singing’}, {‘id’: 1465…
[{‘cast_id’: 5, ‘character’: ‘Marieme, alias V…
[{‘credit_id’: ‘53567267c3a36841d6002424’, ‘de…
12
3013
[{‘id’: 87805, ‘name’: ‘The Gods Must Be Crazy…
5000000
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 35, ‘nam…
NaN
tt0080801
en
The Gods Must Be Crazy
Misery is brought to a small group of Sho in t…
10.973482

[{‘iso_3166_1’: ‘ZA’, ‘name’: ‘South Africa’},…
9/10/80
109.0
[{‘iso_639_1’: ‘af’, ‘name’: ‘Afrikaans’}, {‘i…
Released
The critics are raving… the natives are rest…
The Gods Must Be Crazy
[{‘id’: 409, ‘name’: ‘africa’}, {‘id’: 3800, ‘…
[{‘cast_id’: 5, ‘character’: ‘Xixo’, ‘credit_i…
[{‘credit_id’: ’52fe44a5c3a36847f80a1f6b’, ‘de…
13
3014
NaN
800000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10749, ‘n…
http://www.lhp.com.sg/victor/
tt0316188
en
Raising Victor Vargas
The film follows Victor, a Lower East Side tee…
1.178723

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
5/16/02
88.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
NaN
Raising Victor Vargas
[{‘id’: 10183, ‘name’: ‘independent film’}]
[{‘cast_id’: 3, ‘character’: ‘Victor Vargas’, …
[{‘credit_id’: ’52fe44c9c3a368484e036cd7′, ‘de…
14
3015
NaN
20000000
[{‘id’: 12, ‘name’: ‘Adventure’}, {‘id’: 35, ‘…
http://www.brothersbloom.com/
tt0844286
en
The Brothers Bloom
The Brothers Bloom are the best con men in the…
7.973126

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/9/08
114.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
They’d never let the truth come between them.
The Brothers Bloom
[{‘id’: 3202, ‘name’: ‘con man’}, {‘id’: 20313…
[{‘cast_id’: 1, ‘character’: ‘Penelope Stamp’,…
[{‘credit_id’: ’52fe4426c3a368484e01239d’, ‘de…
15
3016
NaN
0
[{‘id’: 18, ‘name’: ‘Drama’}]
http://www.beautifulboythemovie.com/
tt1533013
en
Beautiful Boy
A married couple on the verge of separation ar…
2.114833

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/12/10
100.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
To confront the truth, first they had to face …
Beautiful Boy
[{‘id’: 3446, ‘name’: ‘forgiveness’}, {‘id’: 4…
[{‘cast_id’: 1, ‘character’: ‘Bill Carroll’, ‘…
[{‘credit_id’: ’52fe4990c3a36847f81a0cc3′, ‘de…
16
3017
[{‘id’: 313576, ‘name’: ‘Hot Tub Time Machine …
36000000
[{‘id’: 878, ‘name’: ‘Science Fiction’}, {‘id’…
http://www.mgm.com/view/Movie/2387/Hot-T…
tt1231587
en
Hot Tub Time Machine
A malfunctioning time machine at a ski resort …
11.967652

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
3/26/10
101.0
[{‘iso_639_1’: ‘ru’, ‘name’: ‘Pусский’}, {‘iso…
Released
Kick some past
Hot Tub Time Machine
[{‘id’: 293, ‘name’: ‘female nudity’}, {‘id’: …
[{‘cast_id’: 2, ‘character’: ‘Adam’, ‘credit_i…
[{‘credit_id’: ‘555adea1c3a3681089001472’, ‘de…
17
3018
NaN
100000000
[{‘id’: 53, ‘name’: ‘Thriller’}, {‘id’: 878, ‘…
NaN
tt2209764
en
Transcendence
Two leading computer scientists work toward th…
9.730176

[{‘iso_3166_1’: ‘CN’, ‘name’: ‘China’}, {‘iso_…
4/16/14
119.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Yesterday, Dr. Will Caster was only human…
Transcendence
[{‘id’: 310, ‘name’: ‘artificial intelligence’…
[{‘cast_id’: 2, ‘character’: ‘Dr. Will Caster’…
[{‘credit_id’: ’53fc4c480e0a267a6f00a3ac’, ‘de…
18
3019
NaN
0
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10402, ‘n…
NaN
tt0078754
en
All That Jazz
Bob Fosse’s semi-autobiographical film celebra…
5.632325

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
12/20/79
123.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
All that work. All that glitter. All that pain…
All That Jazz
[{‘id’: 837, ‘name’: ‘show business’}, {‘id’: …
[{‘cast_id’: 2, ‘character’: ‘Joe Gideon’, ‘cr…
[{‘credit_id’: ’52fe46f09251416c75088863′, ‘de…
19
3020
NaN
200000000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10749, ‘n…
http://www.titanicmovie.com
tt0120338
en
Titanic
84 years later, a 101-year-old woman named Ros…
26.889070

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
11/18/97
194.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
Nothing on Earth could come between them.
Titanic
[{‘id’: 2580, ‘name’: ‘shipwreck’}, {‘id’: 298…
[{‘cast_id’: 20, ‘character’: ‘Rose DeWitt Buk…
[{‘credit_id’: ’52fe425ac3a36847f8017985′, ‘de…
20
3021
NaN
30000000
[{‘id’: 35, ‘name’: ‘Comedy’}, {‘id’: 80, ‘nam…
NaN
tt0124198
en
Very Bad Things
Kyle Fisher has one last night to celebrate li…
10.432293

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/11/98
100.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
They’ve been bad. Very bad.
Very Bad Things
[{‘id’: 549, ‘name’: ‘prostitute’}, {‘id’: 612…
[{‘cast_id’: 17, ‘character’: ‘Kyle Fisher’, ‘…
[{‘credit_id’: ’52fe430c9251416c75001729′, ‘de…
21
3022
NaN
20000000
[{‘id’: 10749, ‘name’: ‘Romance’}, {‘id’: 35, …
http://www.mybestfriendsgirlmovie.com
tt1046163
en
My Best Friend’s Girl
When Dustin’s girlfriend, Alexis, breaks up wi…
14.114136

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/19/08
101.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
It’s funny what love can make you do…
My Best Friend’s Girl
[{‘id’: 248, ‘name’: ‘date’}, {‘id’: 572, ‘nam…
[{‘cast_id’: 3, ‘character’: ‘Tank’, ‘credit_i…
[{‘credit_id’: ’52fe457f9251416c7505887d’, ‘de…
22
3023
NaN
0
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10402, ‘n…
NaN
tt0477392
en
Broken Bridges
A fading country music star (Keith) returns to…
1.120498

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/8/06
105.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
NaN
Broken Bridges
NaN
[{‘cast_id’: 6, ‘character’: ‘Donnie’, ‘credit…
[{‘credit_id’: ’52fe45ac9251416c7505e8d5′, ‘de…
23
3024
NaN
27000000
[{‘id’: 80, ‘name’: ‘Crime’}, {‘id’: 53, ‘name…
NaN
tt0324127
en
Suspect Zero
A killer is on the loose, and an FBI agent sif…
7.550891

[{‘iso_3166_1’: ‘DE’, ‘name’: ‘Germany’}, {‘is…
8/27/04
99.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Who’s next?
Suspect Zero
[{‘id’: 10714, ‘name’: ‘serial killer’}]
[{‘cast_id’: 1, ‘character’: ‘Fran Kulok’, ‘cr…
[{‘credit_id’: ’52fe4492c3a36847f809daeb’, ‘de…
24
3025
NaN
0
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 18, ‘nam…
NaN
tt1735907
en
The Adderall Diaries
Writer and Adderall enthusiast Stephen Elliott…
4.142280

NaN
4/15/16
105.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
The truth is a motherf_cker.
The Adderall Diaries
[{‘id’: 818, ‘name’: ‘based on novel’}, {‘id’:…
[{‘cast_id’: 3, ‘character’: ‘Stephen Elliott’…
[{‘credit_id’: ‘5391fcac0e0a266dc20001ce’, ‘de…
25
3026
NaN
35000000
[{‘id’: 80, ‘name’: ‘Crime’}, {‘id’: 53, ‘name…
NaN
tt0101540
en
Cape Fear
Sam Bowden is a small-town corporate attorney….
10.302735

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
11/15/91
128.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
There is nothing in the dark that isn’t there …
Cape Fear
[{‘id’: 378, ‘name’: ‘prison’}, {‘id’: 516, ‘n…
[{‘cast_id’: 1, ‘character’: ‘Max Cady’, ‘cred…
[{‘credit_id’: ’52fe4303c3a36847f8033dd9′, ‘de…
26
3027
NaN
5000000
[{‘id’: 14, ‘name’: ‘Fantasy’}, {‘id’: 12, ‘na…
NaN
tt0093744
en
The New Adventures of Pippi Longstocking
After her father’s ship is carried off by a su…
3.078111

[{‘iso_3166_1’: ‘SE’, ‘name’: ‘Sweden’}, {‘iso…
7/6/88
100.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Come see Pippi as you’ve never seen her before!
The New Adventures of Pippi Longstocking
[{‘id’: 391, ‘name’: ‘flying car’}, {‘id’: 434…
[{‘cast_id’: 1, ‘character’: ‘Pippi Longstocki…
[{‘credit_id’: ‘573e27c1c3a3681d350003cc’, ‘de…
27
3028
NaN
44000000
[{‘id’: 80, ‘name’: ‘Crime’}, {‘id’: 53, ‘name…
http://www.accountantmovie.com/
tt2140479
en
The Accountant
As a math savant uncooks the books for a new c…
13.465656

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
10/14/16
128.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Calculate your choices.
The Accountant
[{‘id’: 1646, ‘name’: ‘autism’}, {‘id’: 15009,…
[{‘cast_id’: 1, ‘character’: ‘Chris Wolff’, ‘c…
[{‘credit_id’: ‘579dcf06c3a3683304000e0d’, ‘de…
28
3029
[{‘id’: 409138, ‘name’: ‘Yossi Collection’, ‘p…
500000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10749, ‘n…
http://yossifilm.com/
tt1934269
he
הסיפור של יוסי
The sequel to “Yossi and Jagger” finds charact…
1.162001

[{‘iso_3166_1’: ‘IL’, ‘name’: ‘Israel’}]
5/16/12
84.0
[{‘iso_639_1’: ‘he’, ‘name’: ‘עִבְרִית’}]
Released
NaN
Yossi
[{‘id’: 237, ‘name’: ‘gay’}]
[{‘cast_id’: 2, ‘character’: ‘Yossi’, ‘credit_…
[{‘credit_id’: ’52fe4bbac3a36847f821188d’, ‘de…
29
3030
NaN
35000000
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 37, ‘nam…
NaN
tt0244000
en
American Outlaws
When a Midwest town learns that a corrupt rail…
10.855383

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
8/17/01
94.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Sometimes the wrong side of the law is the rig…
American Outlaws
[{‘id’: 798, ‘name’: ‘sheriff’}, {‘id’: 2673, …
[{‘cast_id’: 4, ‘character’: ‘Jesse James’, ‘c…
[{‘credit_id’: ’58f7e15f9251413743000b80′, ‘de…






















4368
7369
NaN
25000000
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 18, ‘nam…
https://www.facebook.com/JaneGotAGunFilm/
tt2140037
en
Jane Got a Gun
After her outlaw husband returns home shot wit…
8.826071

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
1/1/16
98.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
NaN
Jane Got a Gun
NaN
[{‘cast_id’: 25, ‘character’: ‘Jane Hammond’, …
[{‘credit_id’: ’52fe4d50c3a36847f825a655′, ‘de…
4369
7370
NaN
30000000
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 53, ‘nam…
NaN
tt0483607
en
Doomsday
A lethal virus spreads throughout the British …
13.436536

[{‘iso_3166_1’: ‘DE’, ‘name’: ‘Germany’}, {‘is…
3/14/08
108.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Mankind has an expiration date.
Doomsday
[{‘id’: 4565, ‘name’: ‘dystopia’}, {‘id’: 6898…
[{‘cast_id’: 1, ‘character’: ‘Major Eden Sincl…
[{‘credit_id’: ‘5518614d9251416f0a00498d’, ‘de…
4370
7371
[{‘id’: 122947, ‘name’: ‘Omega Code Series’, ‘…
0
[{‘id’: 27, ‘name’: ‘Horror’}, {‘id’: 53, ‘nam…
NaN
tt0203408
en
The Omega Code
In this spiritual thriller, an ancient prophec…
1.789046

NaN
10/15/99
100.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
NaN
The Omega Code
[{‘id’: 3036, ‘name’: ‘bible’}, {‘id’: 9937, ‘…
[{‘cast_id’: 1, ‘character’: ‘Gillen Lane’, ‘c…
[{‘credit_id’: ’52fe45c4c3a368484e06dda7′, ‘de…
4371
7372
NaN
55000000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 10749, ‘n…

Home


tt1126591
en
Burlesque
The Burlesque Lounge has its best days behind …
9.276539

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
11/23/10
119.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
It takes a legend… to make a star
Burlesque
[{‘id’: 4344, ‘name’: ‘musical’}, {‘id’: 12670…
[{‘cast_id’: 1, ‘character’: ‘Tess’, ‘credit_i…
[{‘credit_id’: ’58eb3efcc3a3684aa4072ff0′, ‘de…
4372
7373
NaN
170000000
[{‘id’: 12, ‘name’: ‘Adventure’}, {‘id’: 18, ‘…
http://www.hugomovie.com/
tt0970179
en
Hugo
Hugo is an orphan boy living in the walls of a…
14.046164

[{‘iso_3166_1’: ‘FR’, ‘name’: ‘France’}, {‘iso…
11/22/11
126.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
One of the most legendary directors of our tim…
Hugo
[{‘id’: 295, ‘name’: ‘library’}, {‘id’: 1507, …
[{‘cast_id’: 4, ‘character’: ‘Georges M√©li√®s…
[{‘credit_id’: ’52fe469ec3a36847f8108b6f’, ‘de…
4373
7374
[{‘id’: 257053, ‘name’: ‘Carrie Collection’, ‘…
1800000
[{‘id’: 27, ‘name’: ‘Horror’}, {‘id’: 53, ‘nam…
NaN
tt0074285
en
Carrie
Carrie may be ostracized, but the shy teen has…
9.277692

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
11/3/76
98.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
If you’ve got a taste for terror… take Carri…
Carrie
[{‘id’: 818, ‘name’: ‘based on novel’}, {‘id’:…
[{‘cast_id’: 1, ‘character’: ‘Carrie White’, ‘…
[{‘credit_id’: ’52fe447ac3a36847f809861b’, ‘de…
4374
7375
NaN
16000000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 53, ‘name…
NaN
tt0103074
en
Thelma & Louise
Whilst on a short weekend getaway, Louise shoo…
14.785388

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
5/24/91
130.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Somebody said get a life… so they did
Thelma & Louise
[{‘id’: 279, ‘name’: ‘usa’}, {‘id’: 531, ‘name…
[{‘cast_id’: 1, ‘character’: ‘Louise Elizabeth…
[{‘credit_id’: ’52fe42fbc3a36847f8031a83′, ‘de…
4375
7376
NaN
0
[{‘id’: 10769, ‘name’: ‘Foreign’}, {‘id’: 18, …
NaN
tt0322725
it
L’imbalsamatore
Peppino is an aging taxidermist constantly rid…
1.405580

[{‘iso_3166_1’: ‘IT’, ‘name’: ‘Italy’}]
9/6/02
101.0
[{‘iso_639_1’: ‘it’, ‘name’: ‘Italiano’}]
Released
NaN
L’imbalsamatore
[{‘id’: 2483, ‘name’: ‘nudity’}, {‘id’: 9673, …
[{‘cast_id’: 2, ‘character’: ‘Peppino Profeta’…
[{‘credit_id’: ’52fe459e9251416c910389d9′, ‘de…
4376
7377
NaN
4000000
[{‘id’: 12, ‘name’: ‘Adventure’}, {‘id’: 35, ‘…
NaN
tt0065938
en
Kelly’s Heroes
A misfit group of World War II American soldie…
8.418662

[{‘iso_3166_1’: ‘RS’, ‘name’: ‘Serbia’}, {‘iso…
6/22/70
144.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
They set out to rob a bank… and damn near wo…
Kelly’s Heroes
[{‘id’: 1321, ‘name’: ‘gold’}, {‘id’: 1956, ‘n…
[{‘cast_id’: 1, ‘character’: ‘Sergeant First C…
[{‘credit_id’: ’52fe44619251416c75032b81′, ‘de…
4377
7378
NaN
13200000
[{‘id’: 80, ‘name’: ‘Crime’}, {‘id’: 53, ‘name…
http://www.sonypictures.com/movies/nogooddeed/
tt2011159
en
No Good Deed
Terri is a devoted wife and mother of two, liv…
24.644321

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/10/14
83.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
First he gets into your house. Then he gets in…
No Good Deed
[{‘id’: 625, ‘name’: ‘sadistic’}, {‘id’: 1562,…
[{‘cast_id’: 5, ‘character’: ‘Colin Evans’, ‘c…
[{‘credit_id’: ‘541ddfe10e0a261235009866’, ‘de…
4378
7379
NaN
42000000
[{‘id’: 80, ‘name’: ‘Crime’}, {‘id’: 18, ‘name…
NaN
tt0399295
en
Lord of War
Yuri Orlov is a globetrotting arms dealer and,…
8.745216

[{‘iso_3166_1’: ‘FR’, ‘name’: ‘France’}, {‘iso…
9/16/05
122.0
[{‘iso_639_1’: ‘ar’, ‘name’: ‘العربية’}, {‘iso…
Released
Where there’s a will, there’s a weapon
Lord of War
[{‘id’: 2106, ‘name’: ‘cold war’}, {‘id’: 6110…
[{‘cast_id’: 1, ‘character’: ‘Yuri Orlov’, ‘cr…
[{‘credit_id’: ’52fe4318c3a36847f8039d85′, ‘de…
4379
7380
NaN
0
[{‘id’: 12, ‘name’: ‘Adventure’}, {‘id’: 28, ‘…
NaN
tt1731701
en
Barely Lethal
A 16-year-old international assassin yearning …
11.009871

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
4/30/15
96.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Click. Clique. Bang.
Barely Lethal
[{‘id’: 782, ‘name’: ‘assassin’}, {‘id’: 6270,…
[{‘cast_id’: 4, ‘character’: ‘Megan Walsh’, ‘c…
[{‘credit_id’: ’52fe4f35c3a36847f82c554f’, ‘de…
4380
7381
NaN
0
[{‘id’: 35, ‘name’: ‘Comedy’}, {‘id’: 10402, ‘…
https://www.uphe.com/movies/popstar-never-stop…
tt3960412
en
Popstar: Never Stop Never Stopping
When his new album fails to sell records, pop/…
5.285420

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
6/3/16
86.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
NaN
Popstar: Never Stop Never Stopping
[{‘id’: 3490, ‘name’: ‘pop star’}, {‘id’: 4048…
[{‘cast_id’: 0, ‘character’: ‘Conner’, ‘credit…
[{‘credit_id’: ‘555da498c3a3686934001048’, ‘de…
4381
7382
NaN
600000
[{‘id’: 36, ‘name’: ‘History’}, {‘id’: 99, ‘na…
NaN
tt0066580
en
Woodstock
An intimate look at the Woodstock Music & Art …
3.624542

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
3/26/70
225.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
3 days of peace, music…and love.
Woodstock
[{‘id’: 458, ‘name’: ‘hippie’}, {‘id’: 460, ‘n…
[{‘cast_id’: 10, ‘character’: ‘Himself’, ‘cred…
[{‘credit_id’: ’52fe44fac3a36847f80b55ef’, ‘de…
4382
7383
NaN
800000
[{‘id’: 35, ‘name’: ‘Comedy’}, {‘id’: 18, ‘nam…
NaN
tt0933361
en
Dikari
The sea, August, interesting and simple people…
0.903061

NaN
11/23/06
100.0
[{‘iso_639_1’: ‘ru’, ‘name’: ‘Pусский’}]
Released
NaN
Savages
NaN
[{‘cast_id’: 1001, ‘character’: ‘Mister’, ‘cre…
[{‘credit_id’: ’52fe468cc3a368484e096ba7′, ‘de…
4383
7384
NaN
10000000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 53, ‘name…
http://www.disconnectthemovie.com/
tt1433811
en
Disconnect
Disconnect interweaves multiple storylines abo…
12.188120

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
9/11/12
115.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Look up
Disconnect
[{‘id’: 1576, ‘name’: ‘technology’}, {‘id’: 56…
[{‘cast_id’: 3, ‘character’: ‘Rich Boyd’, ‘cre…
[{‘credit_id’: ’52fe4afcc3a368484e17164d’, ‘de…
4384
7385
NaN
15000000
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 18, ‘nam…
NaN
tt0093640
en
No Way Out
Navy Lt. Tom Farrell meets a young woman, Susa…
11.457803

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
8/14/87
114.0
[{‘iso_639_1’: ‘ru’, ‘name’: ‘Pусский’}, {‘iso…
Released
Is it a crime of passion, or an act of treason?
No Way Out
[{‘id’: 1849, ‘name’: ‘homicide’}, {‘id’: 2314…
[{‘cast_id’: 1, ‘character’: ‘Lt. Cmdr. Tom Fa…
[{‘credit_id’: ’52fe43209251416c75004869′, ‘de…
4385
7386
NaN
12000000
[{‘id’: 35, ‘name’: ‘Comedy’}]
http://www.howhighmovie.com/
tt0278488
en
How High
Multi-platinum rap superstars Redman and Metho…
6.796277

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
12/21/01
93.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
They’ve got their degrees all rolled up.
How High
[{‘id’: 1337, ‘name’: ‘carpet’}, {‘id’: 1667, …
[{‘cast_id’: 1, ‘character’: ‘Silas P. Silas’,…
[{‘credit_id’: ’52fe44a4c3a36847f80a1c5f’, ‘de…
4386
7387
[{‘id’: 88574, ‘name’: ‘Scanners Collection’, …
0
[{‘id’: 27, ‘name’: ‘Horror’}, {‘id’: 878, ‘na…
NaN
tt0102848
en
Scanners II: The New Order
A scanner discovers a plot by renegade element…
2.201123

[{‘iso_3166_1’: ‘CA’, ‘name’: ‘Canada’}]
6/28/91
104.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
He can make you do anything…if he puts his m…
Scanners II: The New Order
NaN
[{‘cast_id’: 2, ‘character’: ‘David Kellum’, ‘…
[{‘credit_id’: ’52fe4490c3a368484e029f03′, ‘de…
4387
7388
NaN
0
[{‘id’: 35, ‘name’: ‘Comedy’}, {‘id’: 80, ‘nam…
NaN
tt2172985
en
The Art of the Steal
Crunch Calhoun, a third-rate motorcycle darede…
8.436614

[{‘iso_3166_1’: ‘CA’, ‘name’: ‘Canada’}]
9/11/13
90.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
It takes a great artist to pull off the perfec…
The Art of the Steal
[{‘id’: 3096, ‘name’: ‘book’}, {‘id’: 3156, ‘n…
[{‘cast_id’: 3, ‘character’: ‘Crunch Calhoun’,…
[{‘credit_id’: ’52fe4d5fc3a368484e1e596f’, ‘de…
4388
7389
NaN
1000000
[{‘id’: 18, ‘name’: ‘Drama’}, {‘id’: 14, ‘name…
http://www.specialthemovie.com/
tt0479162
en
Special
A lonely metermaid has a psychotic reaction to…
2.003309

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
1/30/06
81.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
NaN
Special
[{‘id’: 3298, ‘name’: ‘hallucination’}, {‘id’:…
[{‘cast_id’: 5, ‘character’: ‘Les’, ‘credit_id…
[{‘credit_id’: ’52fe45ae9251416c7505ed6f’, ‘de…
4389
7390
NaN
0
[{‘id’: 35, ‘name’: ‘Comedy’}]
http://www.inappropriatecomedy.com
tt1754811
en
InAPPropriate Comedy
A no-nonsense cop has a flair for fashion and …
3.097025

NaN
3/22/13
84.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
An equal opportunity offender.
InAPPropriate Comedy
[{‘id’: 703, ‘name’: ‘detective’}, {‘id’: 726,…
[{‘cast_id’: 3, ‘character’: ‘J.D.’, ‘credit_i…
[{‘credit_id’: ’52fe4b999251416c910dfbfd’, ‘de…
4390
7391
NaN
0
[{‘id’: 18, ‘name’: ‘Drama’}]
NaN
tt0103253
en
Whore
This melodrama investigates the life of a pros…
6.404093

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
6/21/91
85.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
If You’re Afraid to Say It… Just See It.
Whore
[{‘id’: 293, ‘name’: ‘female nudity’}, {‘id’: …
[{‘cast_id’: 1, ‘character’: ‘Liz’, ‘credit_id…
[{‘credit_id’: ’52fe43f5c3a368484e007f93′, ‘de…
4391
7392
NaN
10000000
[{‘id’: 18, ‘name’: ‘Drama’}]
http://www.weareallprecious.com/
tt0929632
en
Precious
Set in Harlem in 1987, Claireece “Precious” Jo…
8.293548

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
11/6/09
110.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
Life is hard. Life is short. Life is painful. …
Precious
[{‘id’: 740, ‘name’: ‘aids’}, {‘id’: 2073, ‘na…
[{‘cast_id’: 1, ‘character’: ‘Precious’, ‘cred…
[{‘credit_id’: ’52fe44dec3a368484e03b7bf’, ‘de…
4392
7393
[{‘id’: 528, ‘name’: ‘The Terminator Collectio…
155000000
[{‘id’: 878, ‘name’: ‘Science Fiction’}, {‘id’…
http://www.terminatormovie.com/
tt1340138
en
Terminator Genisys
The year is 2029. John Connor, leader of the r…
30.188198

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
6/23/15
126.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
Reset the future
Terminator Genisys
[{‘id’: 83, ‘name’: ‘saving the world’}, {‘id’…
[{‘cast_id’: 1, ‘character’: ‘The Terminator’,…
[{‘credit_id’: ‘5605f91d925141306000071e’, ‘de…
4393
7394
NaN
42000000
[{‘id’: 53, ‘name’: ‘Thriller’}]
NaN
tt0218922
en
Original Sin
A young man is plunged into a life of subterfu…
9.970359

[{‘iso_3166_1’: ‘FR’, ‘name’: ‘France’}, {‘iso…
8/3/01
118.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}, {‘iso…
Released
This is not a love story – it’s a story about …
Original Sin
[{‘id’: 515, ‘name’: ‘women’}, {‘id’: 572, ‘na…
[{‘cast_id’: 17, ‘character’: ‘Julia Russell/B…
[{‘credit_id’: ’52fe4330c3a36847f80412db’, ‘de…
4394
7395
[{‘id’: 146534, ‘name’: ‘Without a Paddle Coll…
19000000
[{‘id’: 28, ‘name’: ‘Action’}, {‘id’: 12, ‘nam…
NaN
tt0364751
en
Without a Paddle
Three friends, whose lives have been drifting …
6.046516

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
8/20/04
95.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
The call of the wild, the thrill of adventure….
Without a Paddle
[{‘id’: 4959, ‘name’: ‘death of a friend’}, {‘…
[{‘cast_id’: 40, ‘character’: ‘Dan Mott’, ‘cre…
[{‘credit_id’: ’52fe43b29251416c7501a909′, ‘de…
4395
7396
NaN
16000000
[{‘id’: 18, ‘name’: ‘Drama’}]
NaN
tt0084855
en
The Verdict
Frank Galvin is a down-on-his luck lawyer, red…
9.596883

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
12/8/82
129.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
The doctors want to settle, the Church wants t…
The Verdict
[{‘id’: 1680, ‘name’: ‘boston’}, {‘id’: 6148, …
[{‘cast_id’: 1, ‘character’: ‘Frank Galvin’, ‘…
[{‘credit_id’: ’52fe448bc3a368484e028c55′, ‘de…
4396
7397
NaN
2000000
[{‘id’: 27, ‘name’: ‘Horror’}, {‘id’: 53, ‘nam…
NaN
tt3235888
en
It Follows
For 19-year-old Jay, fall should be about scho…
20.359336

[{‘iso_3166_1’: ‘US’, ‘name’: ‘United States o…
2/4/15
100.0
[{‘iso_639_1’: ‘en’, ‘name’: ‘English’}]
Released
It doesn’t think, it doesn’t feel, it doesn’t …
It Follows
[{‘id’: 3713, ‘name’: ‘chase’}, {‘id’: 6152, ‘…
[{‘cast_id’: 1, ‘character’: ‘Jay Height’, ‘cr…
[{‘credit_id’: ‘537770b20e0a261431002299’, ‘de…
4397
7398
NaN
64000
[{‘id’: 18, ‘name’: ‘Drama’}]
NaN
tt0056663
fr
Vivre sa vie: film en douze tableaux
Twelve episodic tales in the life of a Parisia…
11.305910

[{‘iso_3166_1’: ‘FR’, ‘name’: ‘France’}]
9/20/62
85.0
[{‘iso_639_1’: ‘fr’, ‘name’: ‘Français’}]
Released
The many faces of a woman trying to find herse…
Vivre Sa Vie
[{‘id’: 90, ‘name’: ‘paris’}, {‘id’: 490, ‘nam…
[{‘cast_id’: 8, ‘character’: ‘Nana Kleinfranke…
[{‘credit_id’: ’52fe4306c3a36847f80349a5′, ‘de…
4398 rows × 22 columns
In [ ]:

In [ ]: