程序代写代做代考 python COMP0142¶

COMP0142¶
Assignment 1B: Polynomial Regression & Regularization¶
Introduction¶
In this assignment you will implement Polynomial regression and Regularization using the library Scikit-learn.
In Part A of the assignment we will focus on Polynomial regression with and without regularization. First, we will load the train and test dataset and we will fit a simple polynomial of order 2 to see how to combine the classes PolynomialFeatures and LinearRegression. Then we will fit polynomials of different orders to the training data and we will compute the Mean Squared Error (MSE) of the train and test datasets. We will plot the MSE values to find out which polynomial order fits the data better. Afterwards we will select a specific polynomial degree and we will observe and analyse the impact of regularisation.
In Part B of the assignment we will apply a LASSO Regression model to the mtcars.csv dataset. We will observe how increasing the hyperparameter pushes the weight coefficients to zero more aggressively than in the case of Ridge Regression.

Guidelines¶
• The structure of the code is given to you and you will need to fill in the parts corresponding to each question.
• You will have to submit the completed notebook in the Jupyter notebook format: .ipynb.
• Do not modify/erase other parts of the code if you have not been given specific instructions to do so.
• When you are asked to insert code, do so between the areas which begin:
##########################################################
# TO_DO
# [your code here]
And which end:
# /TO_DO
• ##########################################################

• When you are asked to comment on the results you should give clear and comprehensible explanations. Write the comments in a ‘Code Cell’ with a sign # at the beginning of each row, and in the areas which begin:
# [INSERT YOUR ANSWER HERE]


Imports¶
Please do not change the cell below, you will see a number of imports. All these packages are relevant for the assignment and it is important that you get used to them. You can find more information about them in the respective documentations. The most relevant for this assignment is Scikit-learn:
https://scikit-learn.org/stable/
In [1]:
# PLEASE DO NOT CHANGE THIS CELL

import pandas as pd
import numpy as np

# Standard python libraries for data and visualisation
import matplotlib.pyplot as plt

# SciKit Learn a python ML Library
# Import models
import sklearn
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, Lasso

# Import error metric
from sklearn.metrics import mean_squared_error

# Import data munging tools
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn import preprocessing

# Load files
import pickle

Part A: Polynomial Regression [80 marks]¶
In Lecture 4, we introduced a 1-dimensional input dataset, that gave rise to the following set of $n$ output,input pairs:
$$ \mathcal{S} =\{ (x^{(i)}, y^{(i)}) \}^{n}_{i=1}$$
We want to fit a polynomial of degree $k$ to form the following prediction function:
$$ f_k(x) = w_0 + w_1 x + w_2 x^2 + \ldots + w_k x^k $$
We can transform this problem to a linear regression problem by transforming the input data:
$$\mathbf{X} = \left[\begin{array}{cccc} 1 & x^{(1)} & (x^{(1)})^2 & \dots & (x^{(1)})^k \\ 1 & x^{(2)} & (x^{(2)})^2 & \dots & (x^{(2)})^k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x^{(n)} & (x^{(n)})^2 & \dots & (x^{(n)})^k \\ \end{array}\right], \mathbf{y} = \left[\begin{array}{c} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{array}\right], \mathbf{w} = \left[\begin{array}{c} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_k \end{array}\right] $$
PolynomialFeatures transforms the 1-dimensional array $[x^{(1)},…,x^{(n)}]^T$ into the matrix $\mathbf{X}$. Now, we can use the LinearRegression class to fit the data as we did during the regression class.
The loss function that the model is minimising is:
\begin{equation} \mathsf{L}(\mathcal{E},\mathcal{S}, \mathbf{w}) = \Vert\mathbf{y}- \mathbf{Xw}\Vert^2_2 \end{equation}

We begin by loading the data and plotting it:
In [2]:
# PLEASE DO NOT CHANGE THIS CELL
# Load Data

with open(‘data_pol_fit.pkl’, ‘rb’) as handle:
data = pickle.load(handle)

X = data[‘X’]
y = data[‘y’]

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=42)

X_grid = np.linspace(-2,2,num=100)[:,np.newaxis]
In [3]:
# PLEASE DO NOT CHANGE THIS CELL

fig, ax = plt.subplots(figsize=(7, 5))
ax.scatter(x_train, y_train, c=’r’, marker=’.’, label=”Training data”)
ax.scatter(x_test, y_test, c=’b’, marker=’.’, label=”Test data”)
ax.legend()
plt.xlabel(“$x$”, fontsize=18)
plt.ylabel(“$y$”, rotation=0, fontsize=18)
plt.show()

We fit a polynomial of order 2 to the training dataset and we plot the results:
In [4]:
# PLEASE DO NOT CHANGE THIS CELL

poly_features = PolynomialFeatures(degree=2)

x_train_poly = poly_features.fit_transform(x_train)
X_grid_poly = poly_features.fit_transform(X_grid)

lin_reg = LinearRegression()
lin_reg.fit(x_train_poly, y_train)

y_grid_pred = lin_reg.predict(X_grid_poly)
In [5]:
# PLEASE DO NOT CHANGE THIS CELL

fig, ax = plt.subplots()
ax.scatter(x_train, y_train, c=’r’, marker=’.’, label=”Training data”)
ax.legend()
plt.plot(X_grid, y_grid_pred)
plt.show()

Question 1 [20 marks]¶
Using the same approach fit 0-th to 10-th order polynomials to the training data. For each polynomial order you should:
• Create a Polynomial features instance (call it poly_features) and transform your training and test datasets
• Create a Linear regression model (call it lin_reg) and fit it with the train set
• Compute the predictions of the model for the train and test set
• Compute the Mean Square Error for the train and test set (think about using the mean_squared_error function for Scikit-learn) and append the values to mses_train and mses_test
In [16]:
########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT

y_preds = []
mses_train = []
mses_test = []
max_degree = 10
for degree in range(max_degree+1):
#
########################################################

########################################################
# TO_DO
#[your code here]
poly_features = PolynomialFeatures(degree = degree)
x_train_poly = poly_features.fit_transform(x_train)
x_test_poly = poly_features.fit_transform(x_test)
lin_reg = LinearRegression()
lin_reg.fit(x_train_poly, y_train)
#lin_reg.fit(x_test_poly, y_test)
y_test_pred = lin_reg.predict(x_test_poly)
y_train_pred = lin_reg.predict(x_train_poly)
mses_train.append(mean_squared_error(y_train, y_train_pred))
mses_test.append(mean_squared_error(y_test, y_test_pred))

# /TO_DO
########################################################

########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT

X_grid_poly = poly_features.fit_transform(X_grid)
y_grid_pred = lin_reg.predict(X_grid_poly)
y_preds.append(y_grid_pred)
#
########################################################
In [17]:
# PLEASE DO NOT CHANGE THIS CELL

fig, ax = plt.subplots(figsize=(14, 10))
ax.scatter(x_train, y_train, c=’g’, marker=’.’, label=”Training data”)
ax.scatter(x_test, y_test, c=’b’, marker=’.’, label=”Testing data”)

for degree in range(0,max_degree+1):
ax.plot(X_grid, y_preds[degree], label=”{}-th order”.format(degree))

ax.axis([-2, 2, -10, 20])
ax.legend()
plt.show()


In [18]:
# PLEASE DO NOT CHANGE THIS CELL

fig, ax = plt.subplots(figsize = (8,5))
ax.plot(mses_train, label=”Training error”)
ax.plot(mses_test, label=”Testing error”)
plt.xlabel(“$k$”, fontsize=18)
plt.ylabel(“$MSE$”,fontsize=18)
ax.legend()
#ax.axis([0, 10, 0, 40])
plt.show()

Question 2 [20 marks]¶
What is your interpretation of the mean squared error plot? What is happening between $k = 0$ and $k = 10$? Which polynomial order you think fits better the data?
In [ ]:
# [INSERT YOUR ANSWER HERE]

# The mean squared error plot shows how mean square error changes in training set and test set as degree increases
# The training error goes down as degree increases. For the testing error first goes down as dgree increases, the
# at k=6, it goes slighty up, but at k = 8, it the goes slightly down, for around k bigger then 9.5,
# mse goes straight up.
# for this one, k = 4 should fit better the data

Regularization¶
In this section, we will analyse the impact of regularization in the model fitting.
We will implement Polynomial Ridge Regression so the loss function is:
\begin{equation} \mathsf{L}(\mathcal{E},\mathcal{S},\mathbf{w}) = \Vert\mathbf{y}- \mathbf{Xw}\Vert^2_2 + \lambda \Vert\mathbf{w}\Vert^2_2 \end{equation}
where $\lambda$ is the regularization parameter.
To observer the impact of regularization we will specify that the polynomial order is 6 (we could have chosen any another order) and we will fit the polynomial regression with different $\lambda$ values.
We will use the Ridge Scikit-learn class. You can find information and examples of how to use it in:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge

Question 3 [20 marks]¶
Fit a 6-th order polynomial to the training data.
For each polynomial order you should:
• Create a Ridge regression model Ridge (call it ridge_reg) with the lambda_value and fit it to the train set
• Compute the predictions of the model for the train and test set
• Compute the Mean Square Error for the train and test set (think about using the mean_squared_error function for Scikit-learn) and append the values to mses_train and mses_test
In [20]:
# PLEASE DO NOT CHANGE THIS CELL

lambda_list = np.logspace(-3.0, 2.0, num=20)
print(lambda_list)

[1.00000000e-03 1.83298071e-03 3.35981829e-03 6.15848211e-03
1.12883789e-02 2.06913808e-02 3.79269019e-02 6.95192796e-02
1.27427499e-01 2.33572147e-01 4.28133240e-01 7.84759970e-01
1.43844989e+00 2.63665090e+00 4.83293024e+00 8.85866790e+00
1.62377674e+01 2.97635144e+01 5.45559478e+01 1.00000000e+02]
In [27]:
########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT

y_preds = []
mses_train = []
mses_test = []

poly_features = PolynomialFeatures(degree=6)
x_train_poly = poly_features.fit_transform(x_train)
x_test_poly = poly_features.fit_transform(x_test)
X_grid_poly = poly_features.fit_transform(X_grid)

for lambda_value in lambda_list:
#
#########################################################

#########################################################
# TO_DO
#[your code here]
ridge_reg = Ridge(alpha=lambda_value)
ridge_reg.fit(x_train_poly, y_train)
y_train_pred = ridge_reg.predict(x_train_poly)
y_test_pred = ridge_reg.predict(x_test_poly)

mses_train.append(mean_squared_error(y_train, y_train_pred))
mses_test.append(mean_squared_error(y_test, y_test_pred))
# /TO_DO
#########################################################

#########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT
y_grid_pred = ridge_reg.predict(X_grid_poly)
y_preds.append(y_grid_pred)
#
#########################################################

We plot the MSE of the train and test set for each lamba_value:
In [28]:
# PLEASE DO NOT CHANGE THIS CELL

fig, ax = plt.subplots()
ax.plot(lambda_list,mses_train, label=”Training error”)
ax.plot(lambda_list,mses_test, label=”Testing error”)
ax.legend()
plt.xlabel(“$\lambda$”, fontsize=18)
plt.ylabel(“$MSE$”,fontsize=18)
ax.set_xscale(‘log’)
plt.show()


In [29]:
# PLEASE DO NOT CHANGE THIS CELL

lambda_argmin = np.argmin(mses_test)
lambda_opt = lambda_list[lambda_argmin]
print(lambda_opt)

0.23357214690901212
In [30]:
# PLEASE DO NOT CHANGE THIS CELL

fig, ax = plt.subplots(figsize=(7, 5))
ax.scatter(x_train, y_train, c=’g’, marker=’.’, label=”Training data”)
ax.scatter(x_test, y_test, c=’b’, marker=’.’, label=”Testing data”)

ax.plot(X_grid, y_preds[lambda_argmin], label=”alpha = {}”.format(lambda_opt))

ax.axis([-2, 2, -10, 20])
ax.legend()
plt.show()

Question 4 [20 marks]¶
What is your interpretation of the mean squared error plot? What happens when $\lambda$ increases? Is the regularization working?
In [ ]:
# [INSERT YOUR ANSWER HERE]

#

Part B: LASSO Regression [20 marks]¶
In this part of the Assignment, we will analyse the impact of $l1$-regularization in linear regression. We will apply LASSO Regression, so now the loss function is:
\begin{equation} \tilde L(\mathcal{E},\mathcal{S},w) = ||\mathbf{y}- \mathbf{Xw}||^2_2 + \lambda ||\mathbf{w}||_1 \end{equation}
where $\lambda$ is the regularization parameter.
We will observe how this method shrinks some weights more aggressively to zero by using a range of different $\lambda$ values.
We will use the Lasso Scikit-learn class. You can find information and examples of how to use it in:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso

First, we load the mtcars.csv file that contains data about car characteristics. It contains 11 car attributes and we will use Miles per gallon (mpg) as our target value.
1. cyl: Number of cylinders
2. disp: Displacement (cu.in.)
3. hp: Gross horsepower
4. drat: Rear axle ratio
5. wt: Weight (1000 lbs)
6. qsec: 1/4 mile time
7. vs: Engine (0 = V-shaped, 1 = straight)
8. am: Transmission (0 = automatic, 1 = manual)
9. gear: Number of forward gears
10. carb: Number of carburetors
11. mpg: Miles/(US) gallon
In [31]:
# PLEASE DO NOT CHANGE THIS CELL

data = pd.read_csv(‘mtcars.csv’, index_col = 0)
data.head()
Out[31]:

brand
cyl
disp
hp
drat
wt
qsec
vs
am
gear
carb
mpg
0
Mazda RX4
6
160.0
110
3.90
2.620
16.46
0
1
4
4
21.0
1
Mazda RX4 Wag
6
160.0
110
3.90
2.875
17.02
0
1
4
4
21.0
2
Datsun 710
4
108.0
93
3.85
2.320
18.61
1
1
4
1
22.8
3
Hornet 4 Drive
6
258.0
110
3.08
3.215
19.44
1
0
3
1
21.4
4
Hornet Sportabout
8
360.0
175
3.15
3.440
17.02
0
0
3
2
18.7
In [48]:
# PLEASE DO NOT CHANGE THIS CELL

X = data.iloc[:,1:-1]
y = data.iloc[:,-1]
X_colLabels = X.columns[:]
X = preprocessing.scale(X)
y = preprocessing.scale(y)

/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:6: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by the scale function.

Question 5 [10 marks]¶
Now, do the following:
• Apply a Ridge and a LASSO regression to the dataset X with target values y for each lambda value and append the weights/coefficients of each model in the lists weights_ridge and weights_lasso(check the .coef_ method for the Ridge and Lasso class).
In [49]:
########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT

lambda_list = np.logspace(-5.0, 5, num=100)

weights_ridge = []
weights_lasso = []

for lambda_value in lambda_list:

#
#######################################################

#######################################################
# TO_DO
ridge_reg = Ridge(alpha=lambda_value)
ridge_reg.fit(X, y)
y_ridge_pred = ridge_reg.predict(X)
weights_ridge.append(ridge_reg.coef_)
lasso_reg = Lasso(alpha=lambda_value,normalize=True, max_iter=1e5)
lasso_reg.fit(X,y)
y_lasso_pred = lasso_reg.predict(X)
weights_lasso.append(lasso_reg.coef_)

# /TO_DO
##########################################################

Here we can see how the weights are pushed to zero more aggresively for the LASSO regression in comparison to the Ridge regression:
In [50]:
# PLEASE DO NOT CHANGE THIS CELL

fig = plt.figure(figsize = (10,14))
ax = fig.add_subplot(211)
ax.plot(lambda_list, weights_ridge)
ax.set_xscale(‘log’)
ax.legend(labels = X_colLabels, loc=’center left’, bbox_to_anchor=(1, 0.5))
plt.ylabel(‘weights’)
plt.title(‘Ridge weights as a function of the regularization parameter’)

ax = fig.add_subplot(212)
ax.plot(lambda_list, weights_lasso)
ax.set_xscale(‘log’)
ax.legend(labels = X_colLabels, loc=’center left’, bbox_to_anchor=(1, 0.5))
plt.xlabel(‘lambda’)
plt.ylabel(‘weights’)
plt.title(‘LASSO weights as a function of the regularization parameter’)
plt.show()

Question 6 [10 marks]¶
Finally, do the following:
• Compute in which order the attributes weights go to zero when we increase the lambda value using weights_lasso and X_colLabels.
In [71]:
########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT

weights_ordering = []

#
#######################################################

#######################################################
# TO_DO
#[your code here]
df_lasso = pd.DataFrame(weights_lasso, columns = X_colLabels, index=None)
weights_ordering.append(df_lasso.loc[df_lasso[‘cyl’]==0])

# /TO_DO
##########################################################

########################################################
# PLEASE DO NOT MODIFY THIS CODE SEGMENT

print(weights_ordering)

#
##################

[ cyl disp hp drat wt qsec vs am gear carb
42 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
43 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
44 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
45 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
46 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
47 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
48 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
49 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
50 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
51 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
52 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
53 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
54 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
55 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
56 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
57 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
58 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
59 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
60 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
61 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
62 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
63 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
64 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
65 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
66 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
67 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
68 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
69 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
70 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
71 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
72 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
73 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
74 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
75 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
76 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
77 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
78 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
79 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
80 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
81 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
82 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
83 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
84 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
85 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
86 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
87 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
88 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
89 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
90 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
91 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
92 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
93 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
94 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
95 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
96 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
97 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
98 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0
99 -0.0 -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0]
In [59]:

Object `a.all()` not found.
In [ ]: