## 1 The grammar G
i) L E C F V T
ii) a b c d 0 1 2 3 if + – * print
iii) L
iv) L -> E -> (C) -> (if E E) -> (if (F) E )
-> (if (-L) E ) -> (if (-LE) E ) -> (if (-EE) E ) -> (if (-TE) E ) -> (if (-1E) E )
-> (if (-1V) E ) -> (if (-1a) E ) -> (if (-1a) (F) )
-> (if (-1a) (print L) ) -> (if (-1a) (print E) )
-> (if (-1a) (print T) ) -> (if (-1a) (print 1) )
## 2 Prove G is not LL(1)
L -> LE is left recursive, thus G is not LL(1).
## 3 Find an equivalent LL(1) grammar G′