程序代写代做代考 algorithm chain Recommender Systems

Recommender Systems

Social Network Analysis
ERGM Internals
Robin Burke
DePaul University
Chicago, IL
Thanks to Carter Butts for some slides and illustrations

1

Admin
Milestone due
Visualization critique
Next week
5-7 visualizations
2 from Gephi, 2 from ggplot
Others can be any source

ERGM Review

g = the graph we observed
θ = [p1, p2, p3 … pk]
A vector of parameters
What we are trying to fit
t(g) = [t1(g), t2(g), t3(g), … tk(g)]
t(g) = a vector of computed properties of g
What we are measuring about g
γ = the set of all possible graphs of interest

Dot product of two vectors = scalar value

Conditional Log-odds
Useful implication
each unit change in the measurement tk when (i,j) edge is present
increases the conditional log-odds of (i,j) by k

What’s under the hood?
NOT like regression
Stochastic sampling process
approximating maximum likelihood
many parameters of the fitting process
Fitting can fail

Log-likelihood

Create a function κ to represent the ugly sum

Use a ratio with arbitrary vector

An improvement?
But, if Y has distribution governed by θ0

By law of large numbers
So, generate a lot of networks Yi based on a random θ0
Use them to estimate the log-likelihood of a given θ
Try to find θ of maximum likelihood

Problem
The farther away θ0 is from θ
the more samples are needed
exponentially many
Need a θ0 that is “pretty good”
otherwise it doesn’t work at all

Pseudolikelihood estimation
Local approximation of likelihood
Pretend edges are independent
Use logistic regression to estimate θ0
Talked about this last time
If your model is bad
your initial starting point will be bad
you start too far from the destination

Next problem: simulations
How to generate the networks?
We want to be able to sample the set of networks from the distribution given by θ0
but we don’t know the distribution
We also want to know the statistical properties of this distribution
to calculate standard errors

Sampling
Technique to approximate the expected value of a distribution
when the distribution is ugly / hard to integrate
idea: turn an integral into a sum
Also can be used to get the variance, etc.

Expected Values
Want to know the
expected value of a distribution.
We can calculate p(x)
remember that the ERGM is a probabilistic model
but integration is difficult

General method
We have a representation of p(x) and f(x), but integration is intractable
E[f] is difficult as an integral, but easy as a sum.
Randomly select points from distribution p(x) and use these as representative of the distribution of f(x).
It turns out that if correctly sampled, only 10-20 points can be sufficient to estimate the mean and variance of a distribution.
Samples must be independently drawn
Expectation may be dominated by regions of high probability, or high function values

Monte Carlo Example
Sampling techniques to solve difficult integration problems.
What is the area of a circle with radius 1?
What if you don’t know trigonometry?

Monte Carlo Estimation
Take a random x and a random y between 1 and -1
Sample from x and sample from y.
Determine if
Repeat many times.
Count the number of times that the inequality is true.
Divide by the area of the square

Rejection Sampling
The distribution p(x) is easy to evaluate at point x
But difficult to integrate.
Identify a simpler distribution, kq(x), which bounds p(x), and sample, x0, from it.
This is called the proposal distribution.
Generate another sample u from an even distribution between 0 and kq(x0).
If u ≤ p(x0) accept the sample
E.g. use it in the calculation of an expectation of f
Otherwise reject the sample
E.g. omit from the calculation of an expectation of f
This is the square
This is the circle

Rejection Sampling Example

Importance Sampling
One problem with rejection sampling is that you lose information when throwing out samples.
If we are only looking for the expected value of f(x), we can incorporate unlikely samples of x in the calculation.
Again use a proposal distribution to approximate the expected value.
Weight each sample from q by the likelihood that it was also drawn from p.

Graphical Example of Importance Sampling

Markov Chain Monte Carlo
Markov Chain:
p(x1|x2,x3,x4,x5,…) = p(x1|x2)
For MCMC sampling start in a state z(0).
At each step, draw a sample z(m+1) based on the previous state z(m)
Accept this step with some probability based on a proposal distribution.
If the step is accepted: state = z(m+1)
Else: z(m+1) = z(m)
Or only accept if the sample is consistent with an observed value

Markov Chain Monte Carlo
Goal: p(z(m)) = p*(z) as m →∞
MCMCs that have this property are ergodic.
Implies that the sampled distribution converges to the true distribution
Need to define a transition function to move from one state to the next.
How do we draw a sample at state m+1 given state m?
Often, z(m+1) is drawn from a gaussian with z(m) mean and a constant variance.

Metropolis-Hastings Algorithm
Assume the current state is z(m).
Draw a sample z* from q(z|z(m))
Accept probability function

Often use a normal distribution for q
Tradeoff between convergence and acceptance rate based on variance.

Application to simulation
Start with a random network
Modify the network by adding and removing an edge
Use the MH criterion to accept or reject the network
Markov chain converges (in the limit) to the set of networks defined by θ0
We sample this chain
to get networks that have high probability given θ0

Estimation
Being able to sample networks that match our distribution
Means we can calculate the expected values and variance of the target metrics
t(g) terms

Convergence
We need enough steps in the chain
so that the distribution has “mixed”
not contaminated by choice of θ0
We need enough samples from the mixed chain
so that we get good statistical properties
“snapshot”

Summing up
Little gnomes make an initial guess at θ0 using the MPLE
parameters of the model
More gnomes simulate y1,…,yn based on the initial guess
graphs that are likely given the parameters
The simulated sample is used to find θ using MLE
Possibly, the previous two steps are iterated a few times for good measure
since initial estimate may be incorrect

Simulation can fail
Insufficient burn-in
starting point still affects results
Insufficient post-burn samples
sample hasn’t converged
May be degenerate
almost all graphs are same
usually complete/empty
Sample does not cover observed graph
problematic for inference
bad θ0 due to bad model

P(g |θ, t,γ ) = e
θTt (g)


Tt (g ‘)

g ‘∈γ

P(g|q,t,g)=
e
q
T
t(g)
e
q
T
t(g’)
g’Îg
å

log
P(M =mi, j

+ |θ, t,µ)
P(M =mi, j

− |θ, t,µ)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=θ T [t(mi, j

+ )− t(mi, j
− )]=θ TΔij

Δij = t(mij
+ )− t(mij

− )

log
P(M=m
i,j
+
|q,t,m)
P(M=m
i,j

|q,t,m)
é
ë
ê
ê
ù
û
ú
ú
=q
T
[t(m
i,j
+
)-t(m
i,j

)]=q
T
D
ij
D
ij
=t(m
ij
+
)-t(m
ij

)

ℓ(θ ) =θ Tt(g)− log eθ
Tt (g ‘)

g ‘∈γ





ℓ(q)=q
T
t(g)-loge
q
T
t(g’)
g’Îg
å
é
ë
ê
ê
ù
û
ú
ú

ℓ(θ ) =θ Tt(g)− logκ (θ,γ )

ℓ(q)=q
T
t(g)-logk(q,g)

ℓ(θ )− ℓ(θ0 ) = (θ −θ0 )
T t(g)− log κ (θ,γ )

κ (θ0,γ )



ℓ(q)-ℓ(q
0
)=(q-q
0
)
T
t(g)-log
k(q,g)
k(q
0
,g)
é
ë
ê
ù
û
ú

log κ (θ,γ )
κ (θ0,γ )



⎥= E e(θ−θ0 )

T t (Y ) |θ0( )

log
k(q,g)
k(q
0
,g)
é
ë
ê
ù
û
ú
=Ee
(q-q
0
)
T
t(Y)
|q
0
()

E e(θ−θ0 )
T t (Y ) |θ0( ) ≈ 1m e

(θ−θ0 )
T t (Yi )

i=1

m

Ee
(q-q
0
)
T
t(Y)
|q
0
()
»
1
m
e
(q-q
0
)
T
t(Y
i
)
i=1
m
å

E[f ] =

f(x)p(x)dx

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIRUZUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxATCQofICEiIyQlJioxNTk8P0BBQlUkbnVsbNMLDA0OFh5a
TlMub2JqZWN0c1dOUy5rZXlzViRjbGFzc6cPEBESExQVgAmAC4ANgA6AD4AQgBGn
FxgZGhscHYACgAOABIAFgAaAB4AIgBJYcHJlYW1ibGVfEA9iYWNrZ3JvdW5kQ29s
b3JVY29sb3JWc291cmNlVG1vZGVYYmFzZWxpbmVdbWFnbmlmaWNhdGlvbtInDSgp
WU5TLnN0cmluZ18RAchcZG9jdW1lbnRjbGFzc1sxMHB0XXthcnRpY2xlfQpcdXNl
cGFja2FnZVt1c2VuYW1lc117Y29sb3J9ICV1c2VkIGZvciBmb250IGNvbG9yClx1
c2VwYWNrYWdle2Ftc3N5bWJ9ICVtYXRocwpcdXNlcGFja2FnZXthbXNtYXRofSAl
bWF0aHMKXHVzZXBhY2thZ2VbdXRmOF17aW5wdXRlbmN9ICV1c2VmdWwgdG8gdHlw
ZSBkaXJlY3RseSBkaWFjcml0aWMgY2hhcmFjdGVycwpcbmV3Y29tbWFuZHtcYXJn
bWF4fXtcb3BlcmF0b3JuYW1ld2l0aGxpbWl0c3thcmdtYXh9fQpcbmV3Y29tbWFu
ZHtcYmJtYXRyaXh9e1xiZWdpbntibWF0cml4fX0KXG5ld2NvbW1hbmR7XGVibWF0
cml4fXtcZW5ke2JtYXRyaXh9fQpcZGVmXGNpe1xwZXJwXCFcIVwhXHBlcnB9Cgpc
bmV3Y29tbWFuZHtcRX17XG1hdGhiYntFfX0KXG5ld2NvbW1hbmR7XHZhcn17XHRl
eHR7dmFyfX0KXG5ld2NvbW1hbmR7XGNvdn17XHRleHR7Y292fX2ACtIrLC0uWCRj
bGFzc2VzWiRjbGFzc25hbWWjLi8wXxAPTlNNdXRhYmxlU3RyaW5nWE5TU3RyaW5n
WE5TT2JqZWN00jINMzRXTlMuZGF0YU8Q7WJwbGlzdDAw1AECAwQFCBcYVCR0b3BY
JG9iamVjdHNYJHZlcnNpb25ZJGFyY2hpdmVy0QYHVHJvb3SAAaMJChFVJG51bGzT
CwwNDg8QV05TV2hpdGVcTlNDb2xvclNwYWNlViRjbGFzc0IxABADgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVViaWxucHV+iYyUnaIAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtIAM0issNjejNzgwXU5TTXV0YWJsZURhdGFW
TlNEYXRh0jINOjRPEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2
ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFVOU1JH
QlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgkY2xhc3Nlc1ok
Y2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05TS2V5ZWRBcmNo
aXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAAAAAAAAAZAAAA
AAAAAAAAAAAAAAAAtoAM0icNPSlfECdcbWF0aGJie0V9W2ZdID0gXGludCBmKHgp
cCh4KSBcdGV4dHtkeH2AChAEIwAAAAAAAAAAI0BAAAAAAAAA0issQ0SiRDBcTlNE
aWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6
ADwAUgBYAF8AagByAHkAgQCDAIUAhwCJAIsAjQCPAJcAmQCbAJ0AnwChAKMApQCn
ALAAwgDIAM8A1ADdAOsA8AD6AsYCyALNAtYC4QLlAvcDAAMJAw4DFgQGBAgEDQQR
BB8EJgQrBR0FHwUkBU4FUAVSBVsFZAVpBWwFeQV+AAAAAAAAAgEAAAAAAAAARwAA
AAAAAAAAAAAAAAAABZA=

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIQEFUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxAUCQohIiMkJSYnKCkqKy82OTo7PD1VJG51bGzTCwwNDhcg
Wk5TLm9iamVjdHNXTlMua2V5c1YkY2xhc3OoDxAREhMUFRaACoALgAyADoAPgBCA
EYASqBgZGhscHR4fgAKAA4AEgAWABoAHgAiACYATVXRpdGxlWHByZWFtYmxlXxAP
YmFja2dyb3VuZENvbG9yVWNvbG9yVnNvdXJjZVRtb2RlWGJhc2VsaW5lXW1hZ25p
ZmljYXRpb25QXxEByFxkb2N1bWVudGNsYXNzWzEwcHRde2FydGljbGV9Clx1c2Vw
YWNrYWdlW3VzZW5hbWVzXXtjb2xvcn0gJXVzZWQgZm9yIGZvbnQgY29sb3IKXHVz
ZXBhY2thZ2V7YW1zc3ltYn0gJW1hdGhzClx1c2VwYWNrYWdle2Ftc21hdGh9ICVt
YXRocwpcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30gJXVzZWZ1bCB0byB0eXBl
IGRpcmVjdGx5IGRpYWNyaXRpYyBjaGFyYWN0ZXJzClxuZXdjb21tYW5ke1xhcmdt
YXh9e1xvcGVyYXRvcm5hbWV3aXRobGltaXRze2FyZ21heH19ClxuZXdjb21tYW5k
e1xiYm1hdHJpeH17XGJlZ2lue2JtYXRyaXh9fQpcbmV3Y29tbWFuZHtcZWJtYXRy
aXh9e1xlbmR7Ym1hdHJpeH19ClxkZWZcY2l7XHBlcnBcIVwhXCFccGVycH0KClxu
ZXdjb21tYW5ke1xFfXtcbWF0aGJie0V9fQpcbmV3Y29tbWFuZHtcdmFyfXtcdGV4
dHt2YXJ9fQpcbmV3Y29tbWFuZHtcY292fXtcdGV4dHtjb3Z9fdIsDS0uV05TLmRh
dGFPEO1icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2ZXJzaW9uWSRh
cmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFdOU1doaXRlXE5TQ29s
b3JTcGFjZVYkY2xhc3NCMQAQA4AC0hITFBVYJGNsYXNzZXNaJGNsYXNzbmFtZaIV
FldOU0NvbG9yWE5TT2JqZWN0EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIIERYfKDI1
OjxARk1VYmlsbnB1fomMlJ2iAAAAAAAAAQEAAAAAAAAAGQAAAAAAAAAAAAAAAAAA
ALSADdIwMTIzWCRjbGFzc2VzWiRjbGFzc25hbWWjMzQ1XU5TTXV0YWJsZURhdGFW
TlNEYXRhWE5TT2JqZWN00iwNNy5PEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRv
YmplY3RzWCR2ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsM
DQ4PEFVOU1JHQlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtoANXxAnXG1hdGhiYntFfVtmXSA9IFxpbnQg
Zih4KXAoeCkgXHRleHR7ZHh9EAQjAAAAAAAAAAAjQEAAAAAAAADSMDE+P6I/NVxO
U0RpY3Rpb25hcnkSAAGGoF8QD05TS2V5ZWRBcmNoaXZlcgAIABEAFgAfACgAMgA1
ADoAPABTAFkAYABrAHMAegCDAIUAhwCJAIsAjQCPAJEAkwCcAJ4AoACiAKQApgCo
AKoArACuALQAvQDPANUA3ADhAOoA+AD5AsUCygLSA8IDxAPJA9ID3QPhA+8D9gP/
BAQE9gT4BSIFJAUtBTYFOwU+BUsFUAAAAAAAAAIBAAAAAAAAAEIAAAAAAAAAAAAA
AAAAAAVi

f̂ =
1

L

L�

l=1

f(x(l))

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIRUZUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxATCQofICEiIyQlJioxNTk8P0BBQlUkbnVsbNMLDA0OFh5a
TlMub2JqZWN0c1dOUy5rZXlzViRjbGFzc6cPEBESExQVgAmAC4ANgA6AD4AQgBGn
FxgZGhscHYACgAOABIAFgAaAB4AIgBJYcHJlYW1ibGVfEA9iYWNrZ3JvdW5kQ29s
b3JVY29sb3JWc291cmNlVG1vZGVYYmFzZWxpbmVdbWFnbmlmaWNhdGlvbtInDSgp
WU5TLnN0cmluZ18RAchcZG9jdW1lbnRjbGFzc1sxMHB0XXthcnRpY2xlfQpcdXNl
cGFja2FnZVt1c2VuYW1lc117Y29sb3J9ICV1c2VkIGZvciBmb250IGNvbG9yClx1
c2VwYWNrYWdle2Ftc3N5bWJ9ICVtYXRocwpcdXNlcGFja2FnZXthbXNtYXRofSAl
bWF0aHMKXHVzZXBhY2thZ2VbdXRmOF17aW5wdXRlbmN9ICV1c2VmdWwgdG8gdHlw
ZSBkaXJlY3RseSBkaWFjcml0aWMgY2hhcmFjdGVycwpcbmV3Y29tbWFuZHtcYXJn
bWF4fXtcb3BlcmF0b3JuYW1ld2l0aGxpbWl0c3thcmdtYXh9fQpcbmV3Y29tbWFu
ZHtcYmJtYXRyaXh9e1xiZWdpbntibWF0cml4fX0KXG5ld2NvbW1hbmR7XGVibWF0
cml4fXtcZW5ke2JtYXRyaXh9fQpcZGVmXGNpe1xwZXJwXCFcIVwhXHBlcnB9Cgpc
bmV3Y29tbWFuZHtcRX17XG1hdGhiYntFfX0KXG5ld2NvbW1hbmR7XHZhcn17XHRl
eHR7dmFyfX0KXG5ld2NvbW1hbmR7XGNvdn17XHRleHR7Y292fX2ACtIrLC0uWCRj
bGFzc2VzWiRjbGFzc25hbWWjLi8wXxAPTlNNdXRhYmxlU3RyaW5nWE5TU3RyaW5n
WE5TT2JqZWN00jINMzRXTlMuZGF0YU8Q7WJwbGlzdDAw1AECAwQFCBcYVCR0b3BY
JG9iamVjdHNYJHZlcnNpb25ZJGFyY2hpdmVy0QYHVHJvb3SAAaMJChFVJG51bGzT
CwwNDg8QV05TV2hpdGVcTlNDb2xvclNwYWNlViRjbGFzc0IxABADgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVViaWxucHV+iYyUnaIAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtIAM0issNjejNzgwXU5TTXV0YWJsZURhdGFW
TlNEYXRh0jINOjRPEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2
ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFVOU1JH
QlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgkY2xhc3Nlc1ok
Y2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05TS2V5ZWRBcmNo
aXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAAAAAAAAAZAAAA
AAAAAAAAAAAAAAAAtoAM0icNPSlfECtcaGF0e2Z9ID0gXGZyYWN7MX17TH1cc3Vt
X3tsPTF9XkxmKHheeyhsKX0pgAoQBCMAAAAAAAAAACNAQAAAAAAAANIrLENEokQw
XE5TRGljdGlvbmFyeRIAAYagXxAPTlNLZXllZEFyY2hpdmVyAAgAEQAWAB8AKAAy
ADUAOgA8AFIAWABfAGoAcgB5AIEAgwCFAIcAiQCLAI0AjwCXAJkAmwCdAJ8AoQCj
AKUApwCwAMIAyADPANQA3QDrAPAA+gLGAsgCzQLWAuEC5QL3AwADCQMOAxYEBgQI
BA0EEQQfBCYEKwUdBR8FJAVSBVQFVgVfBWgFbQVwBX0FggAAAAAAAAIBAAAAAAAA
AEcAAAAAAAAAAAAAAAAAAAWU

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIQEFUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxAUCQohIiMkJSYnKCkqKy82OTo7PD1VJG51bGzTCwwNDhcg
Wk5TLm9iamVjdHNXTlMua2V5c1YkY2xhc3OoDxAREhMUFRaACoALgAyADoAPgBCA
EYASqBgZGhscHR4fgAKAA4AEgAWABoAHgAiACYATVXRpdGxlWHByZWFtYmxlXxAP
YmFja2dyb3VuZENvbG9yVWNvbG9yVnNvdXJjZVRtb2RlWGJhc2VsaW5lXW1hZ25p
ZmljYXRpb25QXxEByFxkb2N1bWVudGNsYXNzWzEwcHRde2FydGljbGV9Clx1c2Vw
YWNrYWdlW3VzZW5hbWVzXXtjb2xvcn0gJXVzZWQgZm9yIGZvbnQgY29sb3IKXHVz
ZXBhY2thZ2V7YW1zc3ltYn0gJW1hdGhzClx1c2VwYWNrYWdle2Ftc21hdGh9ICVt
YXRocwpcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30gJXVzZWZ1bCB0byB0eXBl
IGRpcmVjdGx5IGRpYWNyaXRpYyBjaGFyYWN0ZXJzClxuZXdjb21tYW5ke1xhcmdt
YXh9e1xvcGVyYXRvcm5hbWV3aXRobGltaXRze2FyZ21heH19ClxuZXdjb21tYW5k
e1xiYm1hdHJpeH17XGJlZ2lue2JtYXRyaXh9fQpcbmV3Y29tbWFuZHtcZWJtYXRy
aXh9e1xlbmR7Ym1hdHJpeH19ClxkZWZcY2l7XHBlcnBcIVwhXCFccGVycH0KClxu
ZXdjb21tYW5ke1xFfXtcbWF0aGJie0V9fQpcbmV3Y29tbWFuZHtcdmFyfXtcdGV4
dHt2YXJ9fQpcbmV3Y29tbWFuZHtcY292fXtcdGV4dHtjb3Z9fdIsDS0uV05TLmRh
dGFPEO1icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2ZXJzaW9uWSRh
cmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFdOU1doaXRlXE5TQ29s
b3JTcGFjZVYkY2xhc3NCMQAQA4AC0hITFBVYJGNsYXNzZXNaJGNsYXNzbmFtZaIV
FldOU0NvbG9yWE5TT2JqZWN0EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIIERYfKDI1
OjxARk1VYmlsbnB1fomMlJ2iAAAAAAAAAQEAAAAAAAAAGQAAAAAAAAAAAAAAAAAA
ALSADdIwMTIzWCRjbGFzc2VzWiRjbGFzc25hbWWjMzQ1XU5TTXV0YWJsZURhdGFW
TlNEYXRhWE5TT2JqZWN00iwNNy5PEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRv
YmplY3RzWCR2ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsM
DQ4PEFVOU1JHQlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtoANXxArXGhhdHtmfSA9IFxmcmFjezF9e0x9
XHN1bV97bD0xfV5MZih4XnsobCl9KRAEIwAAAAAAAAAAI0BAAAAAAAAA0jAxPj+i
PzVcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAo
ADIANQA6ADwAUwBZAGAAawBzAHoAgwCFAIcAiQCLAI0AjwCRAJMAnACeAKAAogCk
AKYAqACqAKwArgC0AL0AzwDVANwA4QDqAPgA+QLFAsoC0gPCA8QDyQPSA90D4QPv
A/YD/wQEBPYE+AUmBSgFMQU6BT8FQgVPBVQAAAAAAAACAQAAAAAAAABCAAAAAAAA
AAAAAAAAAAAFZg==

x2 + y2 ≤ 1

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIRUZUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxATCQofICEiIyQlJioxNTk8P0BBQlUkbnVsbNMLDA0OFh5a
TlMub2JqZWN0c1dOUy5rZXlzViRjbGFzc6cPEBESExQVgAmAC4ANgA6AD4AQgBGn
FxgZGhscHYACgAOABIAFgAaAB4AIgBJYcHJlYW1ibGVfEA9iYWNrZ3JvdW5kQ29s
b3JVY29sb3JWc291cmNlVG1vZGVYYmFzZWxpbmVdbWFnbmlmaWNhdGlvbtInDSgp
WU5TLnN0cmluZ18RAchcZG9jdW1lbnRjbGFzc1sxMHB0XXthcnRpY2xlfQpcdXNl
cGFja2FnZVt1c2VuYW1lc117Y29sb3J9ICV1c2VkIGZvciBmb250IGNvbG9yClx1
c2VwYWNrYWdle2Ftc3N5bWJ9ICVtYXRocwpcdXNlcGFja2FnZXthbXNtYXRofSAl
bWF0aHMKXHVzZXBhY2thZ2VbdXRmOF17aW5wdXRlbmN9ICV1c2VmdWwgdG8gdHlw
ZSBkaXJlY3RseSBkaWFjcml0aWMgY2hhcmFjdGVycwpcbmV3Y29tbWFuZHtcYXJn
bWF4fXtcb3BlcmF0b3JuYW1ld2l0aGxpbWl0c3thcmdtYXh9fQpcbmV3Y29tbWFu
ZHtcYmJtYXRyaXh9e1xiZWdpbntibWF0cml4fX0KXG5ld2NvbW1hbmR7XGVibWF0
cml4fXtcZW5ke2JtYXRyaXh9fQpcZGVmXGNpe1xwZXJwXCFcIVwhXHBlcnB9Cgpc
bmV3Y29tbWFuZHtcRX17XG1hdGhiYntFfX0KXG5ld2NvbW1hbmR7XHZhcn17XHRl
eHR7dmFyfX0KXG5ld2NvbW1hbmR7XGNvdn17XHRleHR7Y292fX2ACtIrLC0uWCRj
bGFzc2VzWiRjbGFzc25hbWWjLi8wXxAPTlNNdXRhYmxlU3RyaW5nWE5TU3RyaW5n
WE5TT2JqZWN00jINMzRXTlMuZGF0YU8Q7WJwbGlzdDAw1AECAwQFCBcYVCR0b3BY
JG9iamVjdHNYJHZlcnNpb25ZJGFyY2hpdmVy0QYHVHJvb3SAAaMJChFVJG51bGzT
CwwNDg8QV05TV2hpdGVcTlNDb2xvclNwYWNlViRjbGFzc0IxABADgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVViaWxucHV+iYyUnaIAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtIAM0issNjejNzgwXU5TTXV0YWJsZURhdGFW
TlNEYXRh0jINOjRPEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2
ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFVOU1JH
QlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgkY2xhc3Nlc1ok
Y2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05TS2V5ZWRBcmNo
aXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAAAAAAAAAZAAAA
AAAAAAAAAAAAAAAAtoAM0icNPSlfEBB4XjIgKyB5XjIgXGxlcSAxgAoQBCMAAAAA
AAAAACNAQAAAAAAAANIrLENEokQwXE5TRGljdGlvbmFyeRIAAYagXxAPTlNLZXll
ZEFyY2hpdmVyAAgAEQAWAB8AKAAyADUAOgA8AFIAWABfAGoAcgB5AIEAgwCFAIcA
iQCLAI0AjwCXAJkAmwCdAJ8AoQCjAKUApwCwAMIAyADPANQA3QDrAPAA+gLGAsgC
zQLWAuEC5QL3AwADCQMOAxYEBgQIBA0EEQQfBCYEKwUdBR8FJAU3BTkFOwVEBU0F
UgVVBWIFZwAAAAAAAAIBAAAAAAAAAEcAAAAAAAAAAAAAAAAAAAV5

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIQEFUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxAUCQohIiMkJSYnKCkqKy82OTo7PD1VJG51bGzTCwwNDhcg
Wk5TLm9iamVjdHNXTlMua2V5c1YkY2xhc3OoDxAREhMUFRaACoALgAyADoAPgBCA
EYASqBgZGhscHR4fgAKAA4AEgAWABoAHgAiACYATVXRpdGxlWHByZWFtYmxlXxAP
YmFja2dyb3VuZENvbG9yVWNvbG9yVnNvdXJjZVRtb2RlWGJhc2VsaW5lXW1hZ25p
ZmljYXRpb25QXxEByFxkb2N1bWVudGNsYXNzWzEwcHRde2FydGljbGV9Clx1c2Vw
YWNrYWdlW3VzZW5hbWVzXXtjb2xvcn0gJXVzZWQgZm9yIGZvbnQgY29sb3IKXHVz
ZXBhY2thZ2V7YW1zc3ltYn0gJW1hdGhzClx1c2VwYWNrYWdle2Ftc21hdGh9ICVt
YXRocwpcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30gJXVzZWZ1bCB0byB0eXBl
IGRpcmVjdGx5IGRpYWNyaXRpYyBjaGFyYWN0ZXJzClxuZXdjb21tYW5ke1xhcmdt
YXh9e1xvcGVyYXRvcm5hbWV3aXRobGltaXRze2FyZ21heH19ClxuZXdjb21tYW5k
e1xiYm1hdHJpeH17XGJlZ2lue2JtYXRyaXh9fQpcbmV3Y29tbWFuZHtcZWJtYXRy
aXh9e1xlbmR7Ym1hdHJpeH19ClxkZWZcY2l7XHBlcnBcIVwhXCFccGVycH0KClxu
ZXdjb21tYW5ke1xFfXtcbWF0aGJie0V9fQpcbmV3Y29tbWFuZHtcdmFyfXtcdGV4
dHt2YXJ9fQpcbmV3Y29tbWFuZHtcY292fXtcdGV4dHtjb3Z9fdIsDS0uV05TLmRh
dGFPEO1icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2ZXJzaW9uWSRh
cmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFdOU1doaXRlXE5TQ29s
b3JTcGFjZVYkY2xhc3NCMQAQA4AC0hITFBVYJGNsYXNzZXNaJGNsYXNzbmFtZaIV
FldOU0NvbG9yWE5TT2JqZWN0EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIIERYfKDI1
OjxARk1VYmlsbnB1fomMlJ2iAAAAAAAAAQEAAAAAAAAAGQAAAAAAAAAAAAAAAAAA
ALSADdIwMTIzWCRjbGFzc2VzWiRjbGFzc25hbWWjMzQ1XU5TTXV0YWJsZURhdGFW
TlNEYXRhWE5TT2JqZWN00iwNNy5PEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRv
YmplY3RzWCR2ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsM
DQ4PEFVOU1JHQlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtoANXxAQeF4yICsgeV4yIFxsZXEgMRAEIwAA
AAAAAAAAI0BAAAAAAAAA0jAxPj+iPzVcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tl
eWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwAUwBZAGAAawBzAHoAgwCFAIcA
iQCLAI0AjwCRAJMAnACeAKAAogCkAKYAqACqAKwArgC0AL0AzwDVANwA4QDqAPgA
+QLFAsoC0gPCA8QDyQPSA90D4QPvA/YD/wQEBPYE+AULBQ0FFgUfBSQFJwU0BTkA
AAAAAAACAQAAAAAAAABCAAAAAAAAAAAAAAAAAAAFSw==

E[f ] =

f(�x)p(�x)d�x

=


f(�x)

p(�x)

q(�x)
q(�x)d�x


1

L

L�

l=1

p(�x)

q(�x)
f(�x(l))

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIRUZUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxATCQofICEiIyQlJioxNTk8P0BBQlUkbnVsbNMLDA0OFh5a
TlMub2JqZWN0c1dOUy5rZXlzViRjbGFzc6cPEBESExQVgAmAC4ANgA6AD4AQgBGn
FxgZGhscHYACgAOABIAFgAaAB4AIgBJYcHJlYW1ibGVfEA9iYWNrZ3JvdW5kQ29s
b3JVY29sb3JWc291cmNlVG1vZGVYYmFzZWxpbmVdbWFnbmlmaWNhdGlvbtInDSgp
WU5TLnN0cmluZ18RAchcZG9jdW1lbnRjbGFzc1sxMHB0XXthcnRpY2xlfQpcdXNl
cGFja2FnZVt1c2VuYW1lc117Y29sb3J9ICV1c2VkIGZvciBmb250IGNvbG9yClx1
c2VwYWNrYWdle2Ftc3N5bWJ9ICVtYXRocwpcdXNlcGFja2FnZXthbXNtYXRofSAl
bWF0aHMKXHVzZXBhY2thZ2VbdXRmOF17aW5wdXRlbmN9ICV1c2VmdWwgdG8gdHlw
ZSBkaXJlY3RseSBkaWFjcml0aWMgY2hhcmFjdGVycwpcbmV3Y29tbWFuZHtcYXJn
bWF4fXtcb3BlcmF0b3JuYW1ld2l0aGxpbWl0c3thcmdtYXh9fQpcbmV3Y29tbWFu
ZHtcYmJtYXRyaXh9e1xiZWdpbntibWF0cml4fX0KXG5ld2NvbW1hbmR7XGVibWF0
cml4fXtcZW5ke2JtYXRyaXh9fQpcZGVmXGNpe1xwZXJwXCFcIVwhXHBlcnB9Cgpc
bmV3Y29tbWFuZHtcRX17XG1hdGhiYntFfX0KXG5ld2NvbW1hbmR7XHZhcn17XHRl
eHR7dmFyfX0KXG5ld2NvbW1hbmR7XGNvdn17XHRleHR7Y292fX2ACtIrLC0uWCRj
bGFzc2VzWiRjbGFzc25hbWWjLi8wXxAPTlNNdXRhYmxlU3RyaW5nWE5TU3RyaW5n
WE5TT2JqZWN00jINMzRXTlMuZGF0YU8Q7WJwbGlzdDAw1AECAwQFCBcYVCR0b3BY
JG9iamVjdHNYJHZlcnNpb25ZJGFyY2hpdmVy0QYHVHJvb3SAAaMJChFVJG51bGzT
CwwNDg8QV05TV2hpdGVcTlNDb2xvclNwYWNlViRjbGFzc0IxABADgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVViaWxucHV+iYyUnaIAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtIAM0issNjejNzgwXU5TTXV0YWJsZURhdGFW
TlNEYXRh0jINOjRPEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2
ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFVOU1JH
QlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgkY2xhc3Nlc1ok
Y2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05TS2V5ZWRBcmNo
aXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAAAAAAAAAZAAAA
AAAAAAAAAAAAAAAAtoAM0icNPSlfENtcbWF0aGJie0V9W2ZdJj1caW50IGYoXHZl
Y3t4fSlwKFx2ZWN7eH0pIFx0ZXh0e2R9XHZlY3t4fVxcCiYgPSBcaW50IGYoXHZl
Y3t4fSlcZnJhY3twKFx2ZWN7eH0pfXtxKFx2ZWN7eH0pfXEoXHZlY3t4fSkgXHRl
eHR7ZH1cdmVje3h9XFwKJiBcYXBwcm94IFxmcmFjezF9e0x9ICBcc3VtX3tsPTF9
XkwgXGZyYWN7cChcdmVje3h9KX17cShcdmVje3h9KX1mKFx2ZWN7eH1eeyhsKX0p
XFyAChAEIwAAAAAAAAAAI0BAAAAAAAAA0issQ0SiRDBcTlNEaWN0aW9uYXJ5EgAB
hqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAoADIANQA6ADwAUgBYAF8AagBy
AHkAgQCDAIUAhwCJAIsAjQCPAJcAmQCbAJ0AnwChAKMApQCnALAAwgDIAM8A1ADd
AOsA8AD6AsYCyALNAtYC4QLlAvcDAAMJAw4DFgQGBAgEDQQRBB8EJgQrBR0FHwUk
BgIGBAYGBg8GGAYdBiAGLQYyAAAAAAAAAgEAAAAAAAAARwAAAAAAAAAAAAAAAAAA
BkQ=

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIQEFUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxAUCQohIiMkJSYnKCkqKy82OTo7PD1VJG51bGzTCwwNDhcg
Wk5TLm9iamVjdHNXTlMua2V5c1YkY2xhc3OoDxAREhMUFRaACoALgAyADoAPgBCA
EYASqBgZGhscHR4fgAKAA4AEgAWABoAHgAiACYATVXRpdGxlWHByZWFtYmxlXxAP
YmFja2dyb3VuZENvbG9yVWNvbG9yVnNvdXJjZVRtb2RlWGJhc2VsaW5lXW1hZ25p
ZmljYXRpb25QXxEByFxkb2N1bWVudGNsYXNzWzEwcHRde2FydGljbGV9Clx1c2Vw
YWNrYWdlW3VzZW5hbWVzXXtjb2xvcn0gJXVzZWQgZm9yIGZvbnQgY29sb3IKXHVz
ZXBhY2thZ2V7YW1zc3ltYn0gJW1hdGhzClx1c2VwYWNrYWdle2Ftc21hdGh9ICVt
YXRocwpcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30gJXVzZWZ1bCB0byB0eXBl
IGRpcmVjdGx5IGRpYWNyaXRpYyBjaGFyYWN0ZXJzClxuZXdjb21tYW5ke1xhcmdt
YXh9e1xvcGVyYXRvcm5hbWV3aXRobGltaXRze2FyZ21heH19ClxuZXdjb21tYW5k
e1xiYm1hdHJpeH17XGJlZ2lue2JtYXRyaXh9fQpcbmV3Y29tbWFuZHtcZWJtYXRy
aXh9e1xlbmR7Ym1hdHJpeH19ClxkZWZcY2l7XHBlcnBcIVwhXCFccGVycH0KClxu
ZXdjb21tYW5ke1xFfXtcbWF0aGJie0V9fQpcbmV3Y29tbWFuZHtcdmFyfXtcdGV4
dHt2YXJ9fQpcbmV3Y29tbWFuZHtcY292fXtcdGV4dHtjb3Z9fdIsDS0uV05TLmRh
dGFPEO1icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2ZXJzaW9uWSRh
cmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFdOU1doaXRlXE5TQ29s
b3JTcGFjZVYkY2xhc3NCMQAQA4AC0hITFBVYJGNsYXNzZXNaJGNsYXNzbmFtZaIV
FldOU0NvbG9yWE5TT2JqZWN0EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIIERYfKDI1
OjxARk1VYmlsbnB1fomMlJ2iAAAAAAAAAQEAAAAAAAAAGQAAAAAAAAAAAAAAAAAA
ALSADdIwMTIzWCRjbGFzc2VzWiRjbGFzc25hbWWjMzQ1XU5TTXV0YWJsZURhdGFW
TlNEYXRhWE5TT2JqZWN00iwNNy5PEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRv
YmplY3RzWCR2ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsM
DQ4PEFVOU1JHQlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtoANXxDbXG1hdGhiYntFfVtmXSY9XGludCBm
KFx2ZWN7eH0pcChcdmVje3h9KSBcdGV4dHtkfVx2ZWN7eH1cXAomID0gXGludCBm
KFx2ZWN7eH0pXGZyYWN7cChcdmVje3h9KX17cShcdmVje3h9KX1xKFx2ZWN7eH0p
IFx0ZXh0e2R9XHZlY3t4fVxcCiYgXGFwcHJveCBcZnJhY3sxfXtMfSAgXHN1bV97
bD0xfV5MIFxmcmFje3AoXHZlY3t4fSl9e3EoXHZlY3t4fSl9ZihcdmVje3h9Xnso
bCl9KVxcEAQjAAAAAAAAAAAjQEAAAAAAAADSMDE+P6I/NVxOU0RpY3Rpb25hcnkS
AAGGoF8QD05TS2V5ZWRBcmNoaXZlcgAIABEAFgAfACgAMgA1ADoAPABTAFkAYABr
AHMAegCDAIUAhwCJAIsAjQCPAJEAkwCcAJ4AoACiAKQApgCoAKoArACuALQAvQDP
ANUA3ADhAOoA+AD5AsUCygLSA8IDxAPJA9ID3QPhA+8D9gP/BAQE9gT4BdYF2AXh
BeoF7wXyBf8GBAAAAAAAAAIBAAAAAAAAAEIAAAAAAAAAAAAAAAAAAAYW

T (z(m), z(m+1)) = p(z(m+1)|z(m))

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIRUZUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxATCQofICEiIyQlJioxNTk8P0BBQlUkbnVsbNMLDA0OFh5a
TlMub2JqZWN0c1dOUy5rZXlzViRjbGFzc6cPEBESExQVgAmAC4ANgA6AD4AQgBGn
FxgZGhscHYACgAOABIAFgAaAB4AIgBJYcHJlYW1ibGVfEA9iYWNrZ3JvdW5kQ29s
b3JVY29sb3JWc291cmNlVG1vZGVYYmFzZWxpbmVdbWFnbmlmaWNhdGlvbtInDSgp
WU5TLnN0cmluZ18RAchcZG9jdW1lbnRjbGFzc1sxMHB0XXthcnRpY2xlfQpcdXNl
cGFja2FnZVt1c2VuYW1lc117Y29sb3J9ICV1c2VkIGZvciBmb250IGNvbG9yClx1
c2VwYWNrYWdle2Ftc3N5bWJ9ICVtYXRocwpcdXNlcGFja2FnZXthbXNtYXRofSAl
bWF0aHMKXHVzZXBhY2thZ2VbdXRmOF17aW5wdXRlbmN9ICV1c2VmdWwgdG8gdHlw
ZSBkaXJlY3RseSBkaWFjcml0aWMgY2hhcmFjdGVycwpcbmV3Y29tbWFuZHtcYXJn
bWF4fXtcb3BlcmF0b3JuYW1ld2l0aGxpbWl0c3thcmdtYXh9fQpcbmV3Y29tbWFu
ZHtcYmJtYXRyaXh9e1xiZWdpbntibWF0cml4fX0KXG5ld2NvbW1hbmR7XGVibWF0
cml4fXtcZW5ke2JtYXRyaXh9fQpcZGVmXGNpe1xwZXJwXCFcIVwhXHBlcnB9Cgpc
bmV3Y29tbWFuZHtcRX17XG1hdGhiYntFfX0KXG5ld2NvbW1hbmR7XHZhcn17XHRl
eHR7dmFyfX0KXG5ld2NvbW1hbmR7XGNvdn17XHRleHR7Y292fX2ACtIrLC0uWCRj
bGFzc2VzWiRjbGFzc25hbWWjLi8wXxAPTlNNdXRhYmxlU3RyaW5nWE5TU3RyaW5n
WE5TT2JqZWN00jINMzRXTlMuZGF0YU8Q7WJwbGlzdDAw1AECAwQFCBcYVCR0b3BY
JG9iamVjdHNYJHZlcnNpb25ZJGFyY2hpdmVy0QYHVHJvb3SAAaMJChFVJG51bGzT
CwwNDg8QV05TV2hpdGVcTlNDb2xvclNwYWNlViRjbGFzc0IxABADgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVViaWxucHV+iYyUnaIAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtIAM0issNjejNzgwXU5TTXV0YWJsZURhdGFW
TlNEYXRh0jINOjRPEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2
ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFVOU1JH
QlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgkY2xhc3Nlc1ok
Y2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05TS2V5ZWRBcmNo
aXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAAAAAAAAAZAAAA
AAAAAAAAAAAAAAAAtoAM0icNPSlfEC1UKHpeeyhtKX0sIHpeeyhtKzEpfSkgPSBw
KHpeeyhtKzEpfXwgel57KG0pfSmAChAEIwAAAAAAAAAAI0BAAAAAAAAA0issQ0Si
RDBcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAARABYAHwAo
ADIANQA6ADwAUgBYAF8AagByAHkAgQCDAIUAhwCJAIsAjQCPAJcAmQCbAJ0AnwCh
AKMApQCnALAAwgDIAM8A1ADdAOsA8AD6AsYCyALNAtYC4QLlAvcDAAMJAw4DFgQG
BAgEDQQRBB8EJgQrBR0FHwUkBVQFVgVYBWEFagVvBXIFfwWEAAAAAAAAAgEAAAAA
AAAARwAAAAAAAAAAAAAAAAAABZY=

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIQEFUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxAUCQohIiMkJSYnKCkqKy82OTo7PD1VJG51bGzTCwwNDhcg
Wk5TLm9iamVjdHNXTlMua2V5c1YkY2xhc3OoDxAREhMUFRaACoALgAyADoAPgBCA
EYASqBgZGhscHR4fgAKAA4AEgAWABoAHgAiACYATVXRpdGxlWHByZWFtYmxlXxAP
YmFja2dyb3VuZENvbG9yVWNvbG9yVnNvdXJjZVRtb2RlWGJhc2VsaW5lXW1hZ25p
ZmljYXRpb25QXxEByFxkb2N1bWVudGNsYXNzWzEwcHRde2FydGljbGV9Clx1c2Vw
YWNrYWdlW3VzZW5hbWVzXXtjb2xvcn0gJXVzZWQgZm9yIGZvbnQgY29sb3IKXHVz
ZXBhY2thZ2V7YW1zc3ltYn0gJW1hdGhzClx1c2VwYWNrYWdle2Ftc21hdGh9ICVt
YXRocwpcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30gJXVzZWZ1bCB0byB0eXBl
IGRpcmVjdGx5IGRpYWNyaXRpYyBjaGFyYWN0ZXJzClxuZXdjb21tYW5ke1xhcmdt
YXh9e1xvcGVyYXRvcm5hbWV3aXRobGltaXRze2FyZ21heH19ClxuZXdjb21tYW5k
e1xiYm1hdHJpeH17XGJlZ2lue2JtYXRyaXh9fQpcbmV3Y29tbWFuZHtcZWJtYXRy
aXh9e1xlbmR7Ym1hdHJpeH19ClxkZWZcY2l7XHBlcnBcIVwhXCFccGVycH0KClxu
ZXdjb21tYW5ke1xFfXtcbWF0aGJie0V9fQpcbmV3Y29tbWFuZHtcdmFyfXtcdGV4
dHt2YXJ9fQpcbmV3Y29tbWFuZHtcY292fXtcdGV4dHtjb3Z9fdIsDS0uV05TLmRh
dGFPEO1icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2ZXJzaW9uWSRh
cmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFdOU1doaXRlXE5TQ29s
b3JTcGFjZVYkY2xhc3NCMQAQA4AC0hITFBVYJGNsYXNzZXNaJGNsYXNzbmFtZaIV
FldOU0NvbG9yWE5TT2JqZWN0EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIIERYfKDI1
OjxARk1VYmlsbnB1fomMlJ2iAAAAAAAAAQEAAAAAAAAAGQAAAAAAAAAAAAAAAAAA
ALSADdIwMTIzWCRjbGFzc2VzWiRjbGFzc25hbWWjMzQ1XU5TTXV0YWJsZURhdGFW
TlNEYXRhWE5TT2JqZWN00iwNNy5PEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRv
YmplY3RzWCR2ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsM
DQ4PEFVOU1JHQlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtoANXxAtVCh6XnsobSl9LCB6XnsobSsxKX0p
ID0gcCh6XnsobSsxKX18IHpeeyhtKX0pEAQjAAAAAAAAAAAjQEAAAAAAAADSMDE+
P6I/NVxOU0RpY3Rpb25hcnkSAAGGoF8QD05TS2V5ZWRBcmNoaXZlcgAIABEAFgAf
ACgAMgA1ADoAPABTAFkAYABrAHMAegCDAIUAhwCJAIsAjQCPAJEAkwCcAJ4AoACi
AKQApgCoAKoArACuALQAvQDPANUA3ADhAOoA+AD5AsUCygLSA8IDxAPJA9ID3QPh
A+8D9gP/BAQE9gT4BSgFKgUzBTwFQQVEBVEFVgAAAAAAAAIBAAAAAAAAAEIAAAAA
AAAAAAAAAAAAAAVo

A(z∗, z(m)) = min


1,

p(z∗), q(z(m)|z∗)
p(z(m)), q(z∗|z(m))

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIRUZUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxATCQofICEiIyQlJioxNTk8P0BBQlUkbnVsbNMLDA0OFh5a
TlMub2JqZWN0c1dOUy5rZXlzViRjbGFzc6cPEBESExQVgAmAC4ANgA6AD4AQgBGn
FxgZGhscHYACgAOABIAFgAaAB4AIgBJYcHJlYW1ibGVfEA9iYWNrZ3JvdW5kQ29s
b3JVY29sb3JWc291cmNlVG1vZGVYYmFzZWxpbmVdbWFnbmlmaWNhdGlvbtInDSgp
WU5TLnN0cmluZ18RAchcZG9jdW1lbnRjbGFzc1sxMHB0XXthcnRpY2xlfQpcdXNl
cGFja2FnZVt1c2VuYW1lc117Y29sb3J9ICV1c2VkIGZvciBmb250IGNvbG9yClx1
c2VwYWNrYWdle2Ftc3N5bWJ9ICVtYXRocwpcdXNlcGFja2FnZXthbXNtYXRofSAl
bWF0aHMKXHVzZXBhY2thZ2VbdXRmOF17aW5wdXRlbmN9ICV1c2VmdWwgdG8gdHlw
ZSBkaXJlY3RseSBkaWFjcml0aWMgY2hhcmFjdGVycwpcbmV3Y29tbWFuZHtcYXJn
bWF4fXtcb3BlcmF0b3JuYW1ld2l0aGxpbWl0c3thcmdtYXh9fQpcbmV3Y29tbWFu
ZHtcYmJtYXRyaXh9e1xiZWdpbntibWF0cml4fX0KXG5ld2NvbW1hbmR7XGVibWF0
cml4fXtcZW5ke2JtYXRyaXh9fQpcZGVmXGNpe1xwZXJwXCFcIVwhXHBlcnB9Cgpc
bmV3Y29tbWFuZHtcRX17XG1hdGhiYntFfX0KXG5ld2NvbW1hbmR7XHZhcn17XHRl
eHR7dmFyfX0KXG5ld2NvbW1hbmR7XGNvdn17XHRleHR7Y292fX2ACtIrLC0uWCRj
bGFzc2VzWiRjbGFzc25hbWWjLi8wXxAPTlNNdXRhYmxlU3RyaW5nWE5TU3RyaW5n
WE5TT2JqZWN00jINMzRXTlMuZGF0YU8Q7WJwbGlzdDAw1AECAwQFCBcYVCR0b3BY
JG9iamVjdHNYJHZlcnNpb25ZJGFyY2hpdmVy0QYHVHJvb3SAAaMJChFVJG51bGzT
CwwNDg8QV05TV2hpdGVcTlNDb2xvclNwYWNlViRjbGFzc0IxABADgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVViaWxucHV+iYyUnaIAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtIAM0issNjejNzgwXU5TTXV0YWJsZURhdGFW
TlNEYXRh0jINOjRPEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2
ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFVOU1JH
QlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgkY2xhc3Nlc1ok
Y2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05TS2V5ZWRBcmNo
aXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAAAAAAAAAZAAAA
AAAAAAAAAAAAAAAAtoAM0icNPSlfEGFBKHpeKiwgel57KG0pfSkgPSBcbWluXGxl
ZnQoIDEsXGZyYWN7cCh6XiopLCBxKHpeeyhtKX18el4qKX17cCh6XnsobSl9KSwg
cSh6Xip8el57KG0pfSl9ICBccmlnaHQpgAoQBCMAAAAAAAAAACNAQAAAAAAAANIr
LENEokQwXE5TRGljdGlvbmFyeRIAAYagXxAPTlNLZXllZEFyY2hpdmVyAAgAEQAW
AB8AKAAyADUAOgA8AFIAWABfAGoAcgB5AIEAgwCFAIcAiQCLAI0AjwCXAJkAmwCd
AJ8AoQCjAKUApwCwAMIAyADPANQA3QDrAPAA+gLGAsgCzQLWAuEC5QL3AwADCQMO
AxYEBgQIBA0EEQQfBCYEKwUdBR8FJAWIBYoFjAWVBZ4FowWmBbMFuAAAAAAAAAIB
AAAAAAAAAEcAAAAAAAAAAAAAAAAAAAXK

fr.chachatelier.pierre.LaTeXiT
YnBsaXN0MDDUAQIDBAUIQEFUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2
ZXLRBgdUcm9vdIABrxAUCQohIiMkJSYnKCkqKy82OTo7PD1VJG51bGzTCwwNDhcg
Wk5TLm9iamVjdHNXTlMua2V5c1YkY2xhc3OoDxAREhMUFRaACoALgAyADoAPgBCA
EYASqBgZGhscHR4fgAKAA4AEgAWABoAHgAiACYATVXRpdGxlWHByZWFtYmxlXxAP
YmFja2dyb3VuZENvbG9yVWNvbG9yVnNvdXJjZVRtb2RlWGJhc2VsaW5lXW1hZ25p
ZmljYXRpb25QXxEByFxkb2N1bWVudGNsYXNzWzEwcHRde2FydGljbGV9Clx1c2Vw
YWNrYWdlW3VzZW5hbWVzXXtjb2xvcn0gJXVzZWQgZm9yIGZvbnQgY29sb3IKXHVz
ZXBhY2thZ2V7YW1zc3ltYn0gJW1hdGhzClx1c2VwYWNrYWdle2Ftc21hdGh9ICVt
YXRocwpcdXNlcGFja2FnZVt1dGY4XXtpbnB1dGVuY30gJXVzZWZ1bCB0byB0eXBl
IGRpcmVjdGx5IGRpYWNyaXRpYyBjaGFyYWN0ZXJzClxuZXdjb21tYW5ke1xhcmdt
YXh9e1xvcGVyYXRvcm5hbWV3aXRobGltaXRze2FyZ21heH19ClxuZXdjb21tYW5k
e1xiYm1hdHJpeH17XGJlZ2lue2JtYXRyaXh9fQpcbmV3Y29tbWFuZHtcZWJtYXRy
aXh9e1xlbmR7Ym1hdHJpeH19ClxkZWZcY2l7XHBlcnBcIVwhXCFccGVycH0KClxu
ZXdjb21tYW5ke1xFfXtcbWF0aGJie0V9fQpcbmV3Y29tbWFuZHtcdmFyfXtcdGV4
dHt2YXJ9fQpcbmV3Y29tbWFuZHtcY292fXtcdGV4dHtjb3Z9fdIsDS0uV05TLmRh
dGFPEO1icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRvYmplY3RzWCR2ZXJzaW9uWSRh
cmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsMDQ4PEFdOU1doaXRlXE5TQ29s
b3JTcGFjZVYkY2xhc3NCMQAQA4AC0hITFBVYJGNsYXNzZXNaJGNsYXNzbmFtZaIV
FldOU0NvbG9yWE5TT2JqZWN0EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIIERYfKDI1
OjxARk1VYmlsbnB1fomMlJ2iAAAAAAAAAQEAAAAAAAAAGQAAAAAAAAAAAAAAAAAA
ALSADdIwMTIzWCRjbGFzc2VzWiRjbGFzc25hbWWjMzQ1XU5TTXV0YWJsZURhdGFW
TlNEYXRhWE5TT2JqZWN00iwNNy5PEO9icGxpc3QwMNQBAgMEBQgXGFQkdG9wWCRv
YmplY3RzWCR2ZXJzaW9uWSRhcmNoaXZlctEGB1Ryb290gAGjCQoRVSRudWxs0wsM
DQ4PEFVOU1JHQlxOU0NvbG9yU3BhY2VWJGNsYXNzRjAgMCAwABABgALSEhMUFVgk
Y2xhc3Nlc1okY2xhc3NuYW1lohUWV05TQ29sb3JYTlNPYmplY3QSAAGGoF8QD05T
S2V5ZWRBcmNoaXZlcggRFh8oMjU6PEBGTVNgZ25wcneAi46Wn6QAAAAAAAABAQAA
AAAAAAAZAAAAAAAAAAAAAAAAAAAAtoANXxBhQSh6XiosIHpeeyhtKX0pID0gXG1p
blxsZWZ0KCAxLFxmcmFje3Aoel4qKSwgcSh6XnsobSl9fHpeKil9e3Aoel57KG0p
fSksIHEoel4qfHpeeyhtKX0pfSAgXHJpZ2h0KRAEIwAAAAAAAAAAI0BAAAAAAAAA
0jAxPj+iPzVcTlNEaWN0aW9uYXJ5EgABhqBfEA9OU0tleWVkQXJjaGl2ZXIACAAR
ABYAHwAoADIANQA6ADwAUwBZAGAAawBzAHoAgwCFAIcAiQCLAI0AjwCRAJMAnACe
AKAAogCkAKYAqACqAKwArgC0AL0AzwDVANwA4QDqAPgA+QLFAsoC0gPCA8QDyQPS
A90D4QPvA/YD/wQEBPYE+AVcBV4FZwVwBXUFeAWFBYoAAAAAAAACAQAAAAAAAABC
AAAAAAAAAAAAAAAAAAAFnA==