程序代写代做代考 algorithm 06_interpolation-checkpoint

06_interpolation-checkpoint

Text provided under a Creative Commons Attribution license, CC-BY. All code is made available under the FSF-approved MIT license. (c) Kyle T. Mandli

In [ ]:

%matplotlib inline
from __future__ import print_function
import numpy
import matplotlib.pyplot as plt

Interpolation¶
Definition: Given a discrete set of values $y_i$ at locations $x_i$, an interpolant is a (piece-wise) continuous function $f(x)$ that passes exactly through the data (i.e. $f(x_i) = y_i$).

Applications¶
Data filling
Function approximation
Fundamental component of other algorithms Root finding (secant method)
Optimization, minima/maxima (successive parabolic interpolation)
Numerical integration and differentiation

Polynomial Interpolation¶
Theorem: There is a unique polynomial of degree $N$, $\mathcal{P}_N(x)$, that passes exactly through $N + 1$ values $y_1, y_2, \ldots, y_N, y_{N+1}$ at distinct points $x_1, x_2, \ldots, x_N, x_{N+1}$.

Consequence of the number of unknowns in $\mathcal{P}_N(x)$.

Example 1: 2 Points¶
Given points are $(x_0, y_0)$ and $(x_1, y_1)$ which will lead to a line:

Define $P_1(x) = p_1 x + p_0$ and use the two points to find $p_0$ and $p_1$:

$$y_0 = p_1 x_0 + p_0 ~~~~ \Rightarrow ~~~~ p_0 = y_0 – p_1 x_0$$

$$\begin{aligned}
y_1 &= p_1 x_1 + p_0 & \Rightarrow \\
y_1 &= p_1 x_1 + y_0 – p_1 x_0 & \Rightarrow \\
p_1 &= \frac{y_1 – y_0}{x_1 – x_0} & \Rightarrow \\
p_0 &= y_0 – \frac{y_1 – y_0}{x_1 – x_0} x_0 &
\end{aligned}$$

$$\mathcal{P}_1(x) = \frac{y_1 – y_0}{x_1 – x_0} x + y_0 – \frac{y_1 – y_0}{x_1 – x_0} x_0 = \frac{y_1 – y_0}{x_1 – x_0} (x – x_0) + y_0$$

Example 2: 3 Points¶
Given points are $(x_0, y_0)$, $(x_1, y_1)$, and $(x_2, y_2)$ which will lead to quadratic polynomial:

Define $\mathcal{P}_2(x) = p_0 x^2 + p_1 x + p_2$ leading to the equations

$$y_0 = p_2 x_0^2 + p_1 x_0 + p_0$$$$y_1 = p_2 x_1^2 + p_1 x_1 + p_0$$$$y_2 = p_2 x_2^2 + p_1 x_2 + p_0$$This gets complicated quickly!

Proof – Uniqueness of Polynomial Interpolants¶
Let

$$\mathcal{P}_N(x) = \sum^N_{n=0} p_n x^n $$or
$$\mathcal{P}_N(x) = p_0 + p_1 x + \cdots + p_{N – 1} x^{N – 1} + p_{N} x^N$$

and require $\mathcal{P}_N(x_i) = y_i$ for $i=0,1,\ldots,N$ and $x_i \neq x_j ~~~ \forall i,j$.

Assume there exists another polynomial

$$Q_N(x) = \sum^N_{n=0} q_n x^n$$that passes through the same set of points such that $Q_N(x_i) = y_i$. Now compute $T_N(x) = \mathcal{P}_N(x) – Q_N(x)$:

We know that by assumption that $T_N(x_i) = 0$ but what about for all $x$?

$$T_N(x) = \mathcal{P}_N(x) – Q_N(x) = \sum^N_{n=0} p_n x^n – q_n x^n = \sum^N_{n=0} (p_n – q_n) x^n$$But if $T_N(x_i) = 0$ implies that $p_n – q_n = 0$ individually and therefore $\mathcal{P}_N(x) = Q_N(x)$.

Monomial Basis¶
Let $\mathcal{P}_N(x) = \sum^N_{n=0} p_n x^n$, $\mathcal{P}_N(x)$ can be represented by a linear combination of the monomials

$$1, x, x^2, x^3, \ldots, x^{N-1}, x^N$$

with weights

$$p_0, p_1, p_2, p_3, \ldots, p_{N-1}, \text{and } p_N$$respectively.

Example 3: Monomial Basis¶
Consider $\mathcal{P}_3(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$ with the four data points $(x_i, y_i), ~~ i = 0,1,2,3$. We have four equations and four unknowns as expected:

$$\mathcal{P}_3(x_0) = p_0 + p_1 x_0 + p_2 x_0^2 + p_3 x_0^3 = y_0$$$$\mathcal{P}_3(x_1) = p_0 + p_1 x_1 + p_2 x_1^2 + p_3 x_1^3 = y_1$$$$\mathcal{P}_3(x_2) = p_0 + p_1 x_2 + p_2 x_2^2 + p_3 x_2^3 = y_2$$$$\mathcal{P}_3(x_3) = p_0 + p_1 x_3 + p_2 x_3^2 + p_3 x_3^3 = y_3$$

Lets rewrite these as a matrix equation:

$$\vec{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad \vec{p} = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$Define the Vandermonde matrix as

$$
V = \begin{bmatrix}
1 & x_0 & x_0^2 & x_0^3 \\
1 & x_1 & x_1^2 & x_1^3 \\
1 & x_2 & x_2^2 & x_2^3 \\
1 & x_3 & x_3^2 & x_3^3
\end{bmatrix}
$$which allows us to write the system of linear equations as $V \vec{p} = \vec{y}$:

$$\begin{bmatrix}
1 & x_0 & x_0^2 & x_0^3 \\
1 & x_1 & x_1^2 & x_1^3 \\
1 & x_2 & x_2^2 & x_2^3 \\
1 & x_3 & x_3^2 & x_3^3
\end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$\begin{bmatrix}
1 & x_0 & x_0^2 & x_0^3 \\
1 & x_1 & x_1^2 & x_1^3 \\
1 & x_2 & x_2^2 & x_2^3 \\
1 & x_3 & x_3^2 & x_3^3
\end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$ What happens if we have redundant data? Either $(x_i, y_i)$ is repeated or for one $i$ we have two values of $y$.
What if we have more points then the order of polynomial we want?
How does this relate to solving the above linear system of equations?

Vandermonde matrices in general are defined as

$$V = \begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^N \\
1 & x_1 & x_1^2 & \cdots & x_1^N \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_m & x_m^2 & \cdots & x_m^N \\
\end{bmatrix}
$$where $V$ is a $m \times n$ matrix with points $(x_i, y_i)$ for $i = 0, 1, 2, 3, \ldots m$ and for an order $N$ polynomial $\mathcal{P}_N(x)$.

Finding $p_i$¶
Finding the coefficients of $\mathcal{P}_N(x)$ can be done by solving the system outlined above. There are functions in numpy that can do this for us such as:

numpy.polyfit(x, y, x.shape[0] – 1)
numpy.vander(x, N=None) to construct the matrix and use a linear solver routine.

We can also use a different basis that might be easier to use.

Lagrangian Basis¶
Given $N+1$ points $(x_0,y_0), (x_1,y_1), \ldots, (x_{N},y_{N})$ again assuming the $x_i$ are all unique, the interpolating polynomial $\mathcal{P}_N(x)$ can be written as

$$\mathcal{P}_N(x) = \sum^{N}_{i=0} y_i \ell_i(x)$$where

$$\ell_i(x) = \prod^{N}_{j=0, j \neq i} \frac{x – x_j}{x_i – x_j} = \frac{x – x_0}{x_i – x_0} \frac{x – x_1}{x_i – x_1} \cdots \frac{x – x_{i-1}}{x_i – x_{i-1}}\frac{x – x_{i+1}}{x_i – x_{i+1}} \cdots \frac{x – x_{N}}{x_i – x_{N}}$$Note that $\ell_i(x_i) = 1$ and $\forall j\neq i, ~~ \ell_i(x_j) = 0$.

Example 4: $N = 1$ Lagrange Polynomial¶
Given 2 points $(x_0, y_0)$ and $(x_1, y_1)$ the Lagrange form of $\mathcal{P}_N(x)$ is given by

$$\ell_0(x) = \frac{x – x_1}{x_0 – x_1}$$and

$$\ell_1(x) = \frac{x – x_0}{x_1 – x_0}$$so that

$$\mathcal{P}_1(x) = \ell_0(x) \cdot y_0 + \ell_1(x) \cdot y_1 = \frac{x – x_1}{x_0 – x_1} \cdot y_0 + \frac{x – x_0}{x_1 – x_0} \cdot y_1$$One important aspect of Lagrange polynomials to note is that the $\ell_i(x)$ functions are exactly 1 when $x = x_i$ and that every other $\ell_j(x)$ where $j \neq i$ is 0.

In [ ]:

data = numpy.array([[-1.5, -0.5], [0.0, 0.5]])
N = data.shape[0] – 1
M = data.shape[0]
x = numpy.linspace(-2.0, 2.0, 100)

# ====================================================
# Compute the Lagrange basis (\ell_i(x))
def lagrange_basis(x, data):
“””Compute Lagrange basis at x given data”””
basis = numpy.ones((data.shape[0], x.shape[0]))
for i in range(data.shape[0]):
for j in range(data.shape[0]):
if i != j:
basis[i, :] *= (x – data[j, 0]) / (data[i, 0] – data[j, 0])
return basis

# ====================================================
# Calculate full polynomial
def poly_interpolant(x, data):
“””Compute polynomial interpolant of (x,y) using Lagrange basis”””
P = numpy.zeros(x.shape[0])
basis = lagrange_basis(x, data)
for n in range(data.shape[0]):
P += basis[n, :] * data[n, 1]
return P

# ====================================================
# Plot individual basis functions
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
basis = lagrange_basis(x, data)
for i in range(N + 1):
axes.plot(x, basis[i, :], label=”$\ell_{%s}(x)$” % i)

axes.set_title(“Lagrange Basis $\ell_i(x)$”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$\ell_i(x)$”)
axes.legend(loc=8)

# Plot full polynomial P_N(x)
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
axes.plot(x, poly_interpolant(x, data), label=”$P_{%s}(x)$” % N)
for point in data:
axes.plot(point[0], point[1], ‘ko’)
axes.set_title(“$P_N(x)$”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P_N(x)$”)

plt.show()

Example 5: Interpolate six points from $sin(\pi x)$¶
Use six points to approximate $\sin$ on the interval $x \in [-1, 1]$. What is the behavior as $N \rightarrow \infty$? Also plot the error between $f(x)$ and the interpolant $P_N(x)$.

In [ ]:

num_points = 4
data = numpy.empty((num_points, 2))
data[:, 0] = numpy.linspace(-1, 1, num_points)
data[:, 1] = numpy.sin(2.0 * numpy.pi * data[:, 0])
N = data.shape[0] – 1 # Degree of polynomial
M = data.shape[0]
x = numpy.linspace(-1.0, 1.0, 100)

# ====================================================
# Plot individual basis functions
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
basis = lagrange_basis(x, data)
for i in range(N + 1):
axes.plot(x, basis[i, :], label=”$\ell_{%s}(x)$” % i)

axes.set_title(“Lagrange Basis $\ell_i(x)$”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$\ell_i(x)$”)
axes.legend(loc=1)

# Plot full polynomial P_N(x)
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
axes.plot(x, poly_interpolant(x, data), label=”$P_{%s}(x)$” % N)
axes.plot(x, numpy.sin(2.0 * numpy.pi * x), ‘r–‘, label=”True $f(x)$”)
for point in data:
axes.plot(point[0], point[1], ‘ko’)
axes.set_title(“$P_N(x)$”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P_N(x)$”)

plt.show()

Example 6: Runge’s Function¶
Interpolate $f(x) = \frac{1}{1 + 25 x^2}$ using 6 points of your choosing on $x \in [-1, 1]$.

Try it with 11 points.

Keep increasing the number of points and see what happens.

In [ ]:

def f(x):
return 1.0 / (1.0 + 25.0 * x**2)

x = numpy.linspace(-1, 1, 100)

num_points = 4
data = numpy.empty((num_points, 2))
data[:, 0] = numpy.linspace(-1, 1, num_points)
data[:, 1] = f(data[:, 0])
N = data.shape[0] – 1

# Plot the results
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

axes.plot(x, poly_interpolant(x, data), ‘b’, label=”$P_6(x)$”)
axes.plot(x, f(x), ‘k’, label=”True $f(x)$”)
axes.plot(data[:, 0], data[:, 1], ‘ro’, label=”data”)

axes.set_title(“Interpolation of Runge’s function”)
axes.set_xlabel(“x”)
axes.set_ylabel(“y”)
axes.legend(loc=1)

plt.show()

Rules of Thumb¶
Avoid high-order interpolants when possible! Keep increasing the number of points and see what happens.
Avoid extrapolation – Increase the range of $x$ in the above example and check how good the approximation is beyond our sampling interval

Error Analysis¶
Theorem: Lagrange Remainder Theorem – Let $f(x) \in C^{N+1}[-1, 1]$, then
$$
f(x) = \mathcal{P}_N(x) + R_N(x)
$$
where $\mathcal{P}_N(x)$ is the interpolating polynomial and
$$
R_N(x) = Q(x) \frac{f^{(N+1)}(c)}{(N+1)!} \quad \text{with} \quad c \in [-1,1]
$$
with
$$
Q(x) = \prod^N_{i=0} (x – x_i) = (x-x_0)(x-x_1)\cdots(x-x_N) .
$$

A few things to note:

For Taylor’s theorem note that $Q(x) = (x – x_0)^{N+1}$ and the error only vanishes at $x_0$.
For Lagrange’s theorem the error vanishes at all $x_i$.
To minimize $R_N(x)$ requires minimizing $|Q(x)|$ for $x \in [-1, 1]$.

Minimizing $R_N(x)$¶
Minimizing the error $R_N(x)$ in Lagrange’s theorem is equivalent to minimizing $|Q(x)|$ for $x \in [-1, 1]$.

Minimizing error $\Leftrightarrow$ picking roots of $Q(x)$ or picking the points where the interpolant data is located. How do we this?

Chebyshev Polynomials¶
Chebyshev polynomials $T_N(x)$ are another basis that can be used for interpolation.

First 5 polynomials
$$T_0(x) = 1$$

$$T_1(x) = x$$$$T_2(x) = 2 x^2 – 1$$$$T_3(x) = 4 x^3 – 3 x$$$$T_4(x) = 8x^4 – 8x^2 + 1$$

In [ ]:

def cheb_poly(x, N):
“””Compute the *N*th Chebyshev polynomial and evaluate it at *x*”””
T = numpy.empty((3, x.shape[0]))
T[0, :] = numpy.ones(x.shape)
T[1, :] = x
if N == 0:
return T[0, :]
elif N == 1:
return T[1, :]
else:
for k in range(2, N + 1):
T[2, :] = 2.0 * x * T[1, :] – T[0, :]
T[0, :] = T[1, :]
T[1, :] = T[2, :]

return T[2, :]

x = numpy.linspace(-1, 1, 100)

fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

for n in range(5):
axes.plot(x, cheb_poly(x, n), label=”$T_%s$” % n)

axes.set_ylim((-1.1, 1.1))
axes.set_title(“Chebyshev Polynomials”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$T_N(x)$”)
axes.legend(loc=1)

plt.show()

Chebyshev nodes of the 1st kind (roots)
$$
x_k = \cos \left (\frac{(2 k – 1) \pi}{2 N} \right ) \quad k = 1, \ldots, N
$$
Chebyshev nodes of the 2nd kind (extrema)
$$
x_k = \cos \left( \frac{k \pi}{N} \right) \quad k = 0, \ldots, N
$$

In [ ]:

N = 5
x_extrema = numpy.cos(numpy.arange(N + 1) * numpy.pi / N)
x_nodes = numpy.cos((2.0 * numpy.arange(1, N + 1) – 1.0) / (2.0 * N) * numpy.pi)

fig = plt.figure()
# fig.set_figwidth(fig.get_figwidth() * 2)
axes = fig.add_subplot(1, 1, 1)

# Plot points
axes.plot(x_extrema, numpy.zeros(N+1), ‘ro’)
axes.plot(x_nodes, numpy.zeros(N), ‘bo’)

# Plot some helpful lines
axes.plot((-1.0, -1.0), (-1.1, 1.1), ‘k–‘)
axes.plot((1.0, 1.0), (-1.1, 1.1), ‘k–‘)
axes.plot((-1.0, 1.0), (0.0, 0.0), ‘k–‘)
for i in range(x_extrema.shape[0]):
axes.plot((x_extrema[i], x_extrema[i]), (-1.1, 1.1), ‘r–‘)
axes.plot(x_extrema[i], cheb_poly(x_extrema, N)[i], ‘ro’)

print(x_extrema)
print(numpy.cos(x_extrema))

# Plot Chebyshev polynomial
x_hat = numpy.linspace(-1, 1, 1000)
axes.plot(x_hat, cheb_poly(x_hat, N), ‘k’)
axes.set_xlim((-1.1, 1.1))
axes.set_ylim((-1.1, 1.1))

# Labels
axes.set_title(“Chebyshev Nodes and Extrema”, fontsize=”20″)
axes.set_xlabel(“x”, fontsize=”15″)
axes.set_ylabel(“$T_{N+1}(x)$”, fontsize=”15″)

plt.show()

In [ ]:

# First-kind Nesting (3 x)
fig = plt.figure()
# fig.set_figwidth(fig.get_figwidth() * 2)
axes = fig.add_subplot(1, 1, 1)

N = 5
factor = 3
x_1 = numpy.cos((2.0 * numpy.arange(1, N + 1) – 1.0) / (2.0 * N) * numpy.pi)
x_2 = numpy.cos((2.0 * numpy.arange(1, factor * N + 1) – 1.0) / (2.0 * factor * N) * numpy.pi)

axes.plot(x_1, numpy.zeros(N), “o”, color=”r”, markerfacecolor=”lightgray”, markersize=”15″)
axes.plot(x_2, numpy.zeros(N * factor), ‘kx’, markersize=”10″)

x_hat = numpy.linspace(-1, 1, 1000)
axes.plot(x_hat, cheb_poly(x_hat, N), ‘k’)
axes.plot(x_hat, cheb_poly(x_hat, factor * N), ‘k’)
axes.set_xlim((-1.1, 1.1))
axes.set_ylim((-1.1, 1.1))
axes.set_title(“Nesting of 1st and 2nd Kind Chebyshev Polynomials”)
axes.set_xlabel(“$x$”)
axes.set_ylabel(“$T_N(x)$”)

Properties:¶
Defined by a recurrence relation

$$T_k(x) = 2 x T_{k-1}(x) – T_{k-2}(x)$$

Leading coefficient of $x^N$ in $T_N(x)$ is $2^{N-1}$ for $N \geq 1$

Extreme values:

$$|T_N(x)| \leq 1 \quad \text{for} \quad -1 \leq x \leq 1$$

Minimax principle: The polynomial

$$T(x) = \frac{T_{N+1}(x)}{2^N}$$

is a monic polynomial with the property that

$$\max |T(x)| \leq \max |Q(X)| \quad \text{for} \quad x \in [-1, 1], \quad \text{and}$$

$$\max |T(x)| = \frac{1}{2^N}$$

Error Analysis Redux¶
Given that the Chebyshev polynomials are a minimum on the interval $[-1, 1]$ we would like $T(x) = Q(x)$.

Since we only know the roots of $Q(x)$ (the points where the interpolant data is located) we require these points to be the roots of the Chebyshev polynomial $T_{N+1}(x)$ therefore enforcing $T(x) = Q(x)$.

The zeros of $T_N(x)$ in the interval $[-1, 1]$ can be shown to satisfy
$$
x_k = \cos\left( \frac{(2k – 1) \pi}{2 N} \right ) \quad \text{for} \quad k=1, \ldots, N
$$
These nodal points (sampling the function at these points) can be shown to minimize interpolation error.

In [ ]:

x = numpy.linspace(0, numpy.pi, 100)
N = 15

fig = plt.figure()
axes = fig.add_subplot(1, 1, 1, aspect=”equal”)

axes.plot(numpy.cos(x), numpy.sin(x), ‘r–‘)
axes.plot(numpy.linspace(-1.1, 1.1, 100), numpy.zeros(x.shape), ‘r’)
for k in range(1, N + 1):
location = [numpy.cos((2.0 * k – 1.0) * numpy.pi / (2.0 * N)),
numpy.sin((2.0 * k – 1.0) * numpy.pi / (2.0 * N))]
axes.plot(location[0], location[1], ‘ko’)
axes.plot(location[0], 0.0, ‘ko’)
axes.plot([location[0], location[0]], [0.0, location[1]], ‘k–‘)

axes.set_xlim((-1.1, 1.1))
axes.set_ylim((-0.1, 1.1))
plt.show()

Summary¶
Minimizing the error in Lagrange’s theorem is equivalent to minimizing
$$
|Q(x)| \quad \text{for} \quad x \in [-1, 1].
$$
We know Chebyshev polynomials are a minimum on the interval $[-1, 1]$ so we would like to have $T(x) = Q(x)$.
Since we only know the roots of $Q(x)$ (the points where the interpolant data is located) we require these points to be the roots of the Chebyshev polynomial $T_{N+1}(x)$ therefore enforcing $T(x) = Q(x)$.
The zeros of $T_N(x)$ in the interval $[-1, 1]$ can be shown to satisfy
$$
x_k = \cos\left( \frac{(2k – 1) \pi}{2 N} \right ) \quad \text{for} \quad k=1, \ldots, N
$$
These nodal points (sampling the function at these points) can be shown to minimize interpolation error.

Notes¶
The Chebyshev nodes minimize interpolation error for any polynomial basis (due to uniqueness any polynomial that these points are identical regardless of the basis).
Chebyshev nodes uniquely define the Chebyshev polynomials.
The boundedness properties of Chebyshev polynomials are what lead us to the roots as a minimization but there are other used for these orthogonal polynomials.
There are two kinds of Chebyshev nodes and therefore two definitions.

In [ ]:

def f(x):
return 1.0 / (1.0 + 25.0 * x**2)

# Parameters
x = numpy.linspace(-1, 1, 100)
num_points = 25

# ============================================================
# Equidistant nodes
equidistant_data = numpy.empty((num_points, 2))
equidistant_data[:, 0] = numpy.linspace(-1, 1, num_points)
equidistant_data[:, 1] = f(equidistant_data[:, 0])
N = equidistant_data.shape[0] – 1

P_lagrange = poly_interpolant(x, equidistant_data)

# ============================================================
# Chebyshev nodes
chebyshev_data = numpy.empty((num_points, 2))
chebyshev_data[:, 0] = numpy.cos((2.0 * numpy.arange(1, num_points + 1) – 1.0) * numpy.pi / (2.0 * num_points))
chebyshev_data[:, 1] = f(chebyshev_data[:, 0])

P_cheby1 = poly_interpolant(x, chebyshev_data)

# Fit directly with Chebyshev polynomials
coeff = numpy.polynomial.chebyshev.chebfit(chebyshev_data[:, 0], chebyshev_data[:, 1], N)
P_cheby2 = numpy.polynomial.chebyshev.chebval(x, coeff)

# Check on unique polynomials
print(numpy.allclose(P_cheby1, P_cheby2))

# ============================================================
# Plot the results
fig = plt.figure()
fig.subplots_adjust(hspace=.5)

axes = fig.add_subplot(2, 1, 1)
axes.plot(x, P_lagrange, ‘b’, label=”$P_%s(x)$” % N)
axes.plot(x, f(x), ‘k’, label=”True $f(x)$”)
axes.plot(equidistant_data[:, 0], equidistant_data[:, 1], ‘ro’, label=”data”)
axes.set_title(“Interpolation of Runge’s function at Equispaced Points”)
axes.set_xlabel(“x”)
axes.set_ylabel(“y”)
axes.legend(loc=8)
print(numpy.linalg.norm(P_lagrange – f(x)))

axes = fig.add_subplot(2, 1, 2)
axes.plot(x, f(x), ‘k’, label=”True $f(x)$”)
axes.plot(x, P_cheby1, ‘b’, label=”$P_%s(x)$” % N)
axes.plot(chebyshev_data[:, 0], chebyshev_data[:, 1], ‘ro’, label=”data”)

axes.set_title(“Interpolation of Runge’s function at Chebyshev Points”)
axes.set_xlabel(“x”)
axes.set_ylabel(“y”)
axes.legend(loc=1)
print(numpy.linalg.norm(P_cheby1 – f(x)))

plt.show()

Piece-Wise Polynomial Interpolation¶
Given $N$ points, use lower order polynomial interpolation to fit the function in pieces. We can choose the order of the polynomials and the continuity.

$C^0$: Interpolant is continuous Linear interpolation
Quadratic interpolation

$C^1$: Interpolation and 1st derivative are continuous Cubic Hermite polynomials (PCHiP)

$C^2$: Interpolation, 1st and 2nd derivatives are continuous Cubic splines

Piece-Wise Linear¶
Given a segment between point $(x_k, y_k)$a nd $(x_{k+1}, y_{k+1})$ define the segment as

$$\mathcal{P}_k(x) = \frac{y_{k+1} – y_k}{x_{k+1} – x_k} (x – x_k) + y_k$$The final interpolant $\mathcal{P}(x)$ is then defined on $[x_k, x_{k+1}]$ using this function.

In [ ]:

data = numpy.array([[1.0, 3.0], [2.0, 1.0], [3.5, 4.0], [5.0, 0.0], [6.0, 0.5], [9.0, -2.0], [9.5, -3.0]])
x = numpy.linspace(0.0, 10, 100)
N = data.shape[0] – 1

# Lagrange Basis
P_lagrange = poly_interpolant(x, data)

# C^0 Piece-wise linear
# P_pw_linear = numpy.interp(x, data[:, 0], data[:, 1])
P_linear = numpy.zeros(x.shape)
for n in range(1, N + 1):
P_linear += ((data[n, 1] – data[n – 1, 1]) / (data[n, 0] – data[n – 1, 0]) * (x – data[n – 1, 0])
+ data[n – 1, 1]) * (x > data[n – 1, 0]) * (x <= data[n, 0]) # Add end points for continuity P_linear += numpy.ones(x.shape) * data[0, 1] * (x < data[0, 0]) P_linear += numpy.ones(x.shape) * data[-1, 1] * (x >= data[-1, 0])

# Plot
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

axes.plot(data[:,0], data[:,1], ‘ko’)
axes.plot(x, P_lagrange, ‘b–‘)
axes.plot(x, P_linear, ‘r’)

axes.set_title(“Interpolated Data – $C^0$ Linear”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P_1(x)$”)
axes.set_xlim([0.0, 10.0])
axes.set_ylim([-4.0, 15.0])

plt.show()

Piece-Wise Overlapping Polynomials¶
In sets of three points $(x_{k+1}, y_{k+1})$, $(x_{k}, y_{k})$, and $(x_{k-1}, y_{k-1})$, find quadratic interpolant and define final interpolant $P(x)$ using the quadratic interpolant $\mathcal{P}_k(x)$ on $[x_{k-1}, x_{k+1}]$.

In [ ]:

data = numpy.array([[1.0, 3.0], [2.0, 1.0], [3.5, 4.0], [5.0, 0.0], [6.0, 0.5], [9.0, -2.0], [9.5, -3.0]])
x = numpy.linspace(0.0, 10, 100)
N = data.shape[0] – 1

# C^0 Piece-wise quadratic
P_quadratic = numpy.zeros(x.shape)
for k in range(1, N + 1, 2):
p = numpy.polyfit(data[k – 1:k + 2, 0], data[k – 1:k + 2, 1], 2)
P_quadratic += numpy.polyval(p, x) * (x > data[k – 1, 0]) * (x <= data[k + 1, 0]) # Add end points for continuity P_quadratic += numpy.ones(x.shape) * data[0, 1] * (x < data[0, 0]) P_quadratic += numpy.ones(x.shape) * data[-1, 1] * (x >= data[-1, 0])

# Plot
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

axes.plot(data[:,0], data[:,1], ‘ko’)
axes.plot(x, P_lagrange, ‘b–‘)
axes.plot(x, P_quadratic, ‘r’)

axes.set_title(“Interpolated Data – $C^0$ Quadratic”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P_3(x)$”)
axes.set_xlim([0.0, 10.0])
axes.set_ylim([-4.0, 15.0])

plt.show()

Piece-Wise $C^1$ Cubic Interpolation¶
For the previous two cases we had discontinous 1st derivatives! We can make this better by constraining the polynomials to be continuous at the boundaries of the piece-wise intervals.

Given a segment between points $(x_k, y_k)$ and $(x_{k+1}, y_{k+1})$ we want to fit a cubic function between the two points.

$$\mathcal{P}_k(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$$$$\mathcal{P}_k(x_k) = y_k, \quad \mathcal{P}_k(x_{k+1}) = y_{k+1}$$

Now we have 4 unknowns but only two data points! Constraining the derivative at each interval end will lead to two new equations and therefore we can solve for the interpolant.

$$\frac{\text{d}}{\text{dx}} \mathcal{P}_k(x_k) = d_k, \quad \frac{\text{d}}{\text{dx}} \mathcal{P}_k(x_{k+1}) = d_{k+1}$$where we need to prescribe the $d_k$s. Since we know the polynomial we can write these 4 equations as

$$\begin{aligned}
p_0 + p_1 x_k + p_2 x_k^2 + p_3 x_k^3 &= y_k \\
p_0 + p_1 x_{k+1} + p_2 x_{k+1}^2 + p_3 x_{k+1}^3 &= y_{k+1} \\
p_1 + 2p_2 x_k + 3 p_3 x_k^2 &= d_k \\
p_1 + 2 p_2 x_{k+1} + 3 p_3 x_{k+1}^2 &= d_{k+1}
\end{aligned}$$

Rewriting this as a system we get
$$\begin{bmatrix}
1 & x_k & x_k^2 & x_k^3 \\
1 & x_{k+1} & x_{k+1}^2 & x_{k+1}^3 \\
0 & 1 & 2 x_k & 3 x_k^2 \\
0 & 1 & 2 x_{k+1} & 3 x_{k+1}^2
\end{bmatrix} \begin{bmatrix}
p_0 \\ p_1 \\ p_2 \\ p_3
\end{bmatrix} = \begin{bmatrix}
y_k \\ y_{k+1} \\ d_k \\ d_{k+1}
\end{bmatrix}$$

A common simplification to the problem description re-parameterizes the locations of the points such that $s \in [0, 1]$ and recast the problem with $(0, y_k)$ and $(1, y_{k+1})$. This simplifies the above system to
$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3
\end{bmatrix} \begin{bmatrix}
p_0 \\ p_1 \\ p_2 \\ p_3
\end{bmatrix} = \begin{bmatrix}
y_k \\ y_{k+1} \\ d_k \\ d_{k+1}
\end{bmatrix}$$

which can be solved to find

$$\begin{aligned}
\mathcal{P}(s) &= (1-s)^2 (1 + 2s) y_k + s^2 (3 – 2 s) y_{k+1} + s (1 – s)^2 d_k – s^2 (1 – s)d_{k+1}\\
\mathcal{P}'(s) &= 6s(s-1) y_k + 6s(1-s) y_{k+1} + (s-1)(3s-1) d_k – s(3s-2) d_{k+1}\\
\mathcal{P}”(s) &= 6 (1-2s)(y_{k+1} – y_k) + (6s – 4) d_k + (6s-2) d_{k+1}
\end{aligned}$$Now, how to choose $d_k$?

PCHIP¶
Piecewise Cubic Hermite Interpolation Polynomial

Picks the slope that preserves monotonicity
Also tried to preserve the shape of the data
Note that in general this interpolant is $\mathcal{P}_k(x) \in C^1$

In [ ]:

import scipy.interpolate as interpolate

data = numpy.array([[1.0, 3.0], [2.0, 1.0], [3.5, 4.0], [5.0, 0.0], [6.0, 0.5], [9.0, -2.0], [9.5, -3.0]])
x = numpy.linspace(0.0, 10, 100)

# C^1 Piece-wise PCHIP
P_pchip = interpolate.pchip_interpolate(data[:, 0], data[:, 1], x)

# Plot
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

axes.plot(data[:,0], data[:,1], ‘ro’)
axes.plot(x, P_pchip, ‘r’)

axes.set_title(“Interpolated Data – $C^1$ Cubic PCHIP”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P_3(x)$”)
axes.set_xlim([0.0, 10.0])
axes.set_ylim([-4.0, 15.0])

plt.show()

Cubic Splines¶
Enfores continuity on second derivatives as well:

$$\mathcal{P}”_{k}(x_{k}) = \mathcal{P}”_{k-1}(x_k)$$

From our generalization before we know

$$\mathcal{P}”(s) = 6 (1-2s)(y_{k+1} – y_k) + (6s – 4) d_k + (6s-2) d_{k+1}$$and our constraint now becomes

$$\mathcal{P}”_{k}(0) = \mathcal{P}”_{k-1}(1)$$$$\mathcal{P}”_{k-1}(1) = 6 (1-2 \cdot 1)(y_{k} – y_{k-1}) + (6\cdot 1 – 4) d_{k-1} + (6\cdot 1-2) d_{k}$$$$\mathcal{P}”_{k}(0) = 6 (1-2 \cdot 0)(y_{k+1} – y_k) + (6\cdot 0 – 4) d_k + (6\cdot 0-2) d_{k+1}$$$$-6(y_{k} – y_{k-1}) + 2 d_{k-1} + 4 d_{k} = 6 (y_{k+1} – y_k) – 4 d_k -2 d_{k+1}$$We now have constraints on choosing the $d_k$ values. Note that we still need to prescribe them at the boundaries of the full interval.

This forms a linear set of equations for the $d_k$s based on the $y_k$ values and can be reformulated into a tri-diagonal linear system

$$\begin{bmatrix}
& \ddots & \ddots & \ddots & & &\\
& 0 & 2 & 8 & 2 & 0 & & \\
& & 0 & 2 & 8 & 2 & 0 & & & \\
& & & 0 & 2 & 8 & 2 & 0 & & \\
& & & & & \ddots & \ddots & \ddots &
\end{bmatrix}\begin{bmatrix}
\vdots \\ d_{k-1} \\ d_{k} \\ d_{k+1} \\ \vdots
\end{bmatrix} = \begin{bmatrix}
\vdots \\ 6 (y_{k} – y_{k-2}) \\ 6 (y_{k+1} – y_{k-1}) \\ 6 (y_{k+2} – y_{k}) \\\vdots
\end{bmatrix}$$The boundaries are still left unconstrained and we must pick some rule to specify the derivatives there.

In [ ]:

import scipy.interpolate as interpolate

data = numpy.array([[1.0, 3.0], [2.0, 1.0], [3.5, 4.0], [5.0, 0.0], [6.0, 0.5], [9.0, -2.0], [9.5, -3.0]])
x = numpy.linspace(0.0, 10, 100)

# C^2 Piece-wise Splines
# Note that to get an interpolant we need to set the smoothing
# parameters *s* to 0
P_spline = interpolate.UnivariateSpline(data[:, 0], data[:, 1], s=0)

# Plot
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

axes.plot(data[:,0], data[:,1], ‘ro’)
axes.plot(x, P_spline(x), ‘r’)

axes.set_title(“Interpolated Data – $C^2$ Cubic Splines”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P_3(x)$”)
axes.set_xlim([0.0, 10.0])
axes.set_ylim([-4.0, 15.0])

plt.show()

In [ ]:

import scipy.interpolate as interpolate

data = numpy.array([[1.0, 3.0], [2.0, 1.0], [3.5, 4.0], [5.0, 0.0], [6.0, 0.5], [9.0, -2.0], [9.5, -3.0]])
x = numpy.linspace(0.0, 10, 100)

# Lagrange Basis
N = data.shape[0] – 1

lagrange_basis = numpy.ones((N + 1, x.shape[0]))
for i in range(N + 1):
for j in range(N + 1):
if i != j:
lagrange_basis[i, :] *= (x – data[j, 0]) / (data[i, 0] – data[j, 0])

# Calculate full polynomial
P_lagrange = numpy.zeros(x.shape[0])
for n in range(N + 1):
P_lagrange += lagrange_basis[n, :] * data[n, 1]

# C^0 Piece-wise linear
# P_pw_linear = numpy.interp(x, data[:, 0], data[:, 1])
P_linear = numpy.zeros(x.shape)
for n in range(1, N + 1):
P_linear += ((data[n, 1] – data[n – 1, 1]) / (data[n, 0] – data[n – 1, 0]) * (x – data[n – 1, 0])
+ data[n – 1, 1]) * (x > data[n – 1, 0]) * (x <= data[n, 0]) # Add end points for continuity P_linear += numpy.ones(x.shape) * data[0, 1] * (x < data[0, 0]) P_linear += numpy.ones(x.shape) * data[-1, 1] * (x >= data[-1, 0])
# C^0 Piece-wise quadratic
P_quadratic = numpy.zeros(x.shape)
for k in range(1, N + 1, 2):
p = numpy.polyfit(data[k – 1:k + 2, 0], data[k – 1:k + 2, 1], 2)
P_quadratic += numpy.polyval(p, x) * (x > data[k – 1, 0]) * (x <= data[k + 1, 0]) # Add end points for continuity P_quadratic += numpy.ones(x.shape) * data[0, 1] * (x < data[0, 0]) P_quadratic += numpy.ones(x.shape) * data[-1, 1] * (x >= data[-1, 0])

# C^1 Piece-wise PCHIP
P_pchip = interpolate.pchip_interpolate(data[:, 0], data[:, 1], x)

# C^2 Piece-wise Splines
P_spline = interpolate.UnivariateSpline(data[:, 0], data[:, 1], s=0)

# Plot
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

axes.plot(data[:,0], data[:,1], ‘ko’, label=”Data”)
axes.plot(x, P_lagrange, ‘y’, label=”Lagrange”)
axes.plot(x, P_linear, ‘g’, label=”PW Linear”)
axes.plot(x, P_quadratic, ‘r’, label=”PW Quadratic”)
axes.plot(x, P_pchip, ‘c’, label=”PW Cubic – PCHIP”)
axes.plot(x, P_spline(x), ‘b’, label=”PW Cubic – Spline”)

axes.set_title(“Interpolated Data – Method Comparisons”)
axes.set_xlabel(“x”)
axes.set_ylabel(“$P(x)$”)
axes.legend()
axes.set_xlim([0.0, 10.0])
axes.set_ylim([-4.0, 15.0])

plt.show()