程序代写代做代考 algorithm PowerPoint Presentation

PowerPoint Presentation

1

Data Visualization Framework

2

Data
Source

Data Layer

Mapper
Data

Collection
Data

Source

Data
Source

Mapping Layer Graphics Layer

Data Layer

• Locating and
obtaining data

• Importing data in
proper format

• Relating data for
proper
correspondence

• Data analysis and
aggregation

Mapping Layer

• Associating
appropriate
geometry with
corresponding
data channels

• Data analysis and
algorithms
(e.g. contouring)

Graphics Layer

• Conversion of
geometry into
displayable image

• Decorations
• Managing interaction

3

Data Types

4

Ordered
(values are

comparable)

Unordered
(values not

comparable)

Discrete
(no between values)

Continuous
(values between)

Cyclic values,
e.g. directions, hues

Ordinal,
e.g. size: S,M,L,XL,…

Quantitative,
e.g. counts: 1,2,3,…

Fields,
e.g. altitude,
temperature

Nominal,
e.g. shape: 

Categories,
e.g. nationality

Mapping Quantitative Values

• Position

• Length

• Angle/Slope

• Area

• Volume

• Color/Density

2

CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experimentation and application to
the development of graphical methods. Journal of the American Statistical Association, 79(387) 1984

Mapping Quantitative Values

• Position

• Length

• Angle/Slope

• Area

• Volume

• Color/Density

3

CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experimentation and application to
the development of graphical methods. Journal of the American Statistical Association, 79(387) 1984

Mapping Quantitative Values

• Position

• Length

• Angle/Slope

• Area

• Volume

• Color/Density

4

Perceptual
Accuracy

CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experimentation and application to
the development of graphical methods. Journal of the American Statistical Association, 79(387) 1984

Mapping Quantitative Values

• Position

• Length

• Angle/Slope

• Area

• Volume

• Color/Density

5

Perceptual
Accuracy

1-D

2-D

3-D

CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experimentation and application to
the development of graphical methods. Journal of the American Statistical Association, 79(387) 1984

6

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

7

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

8

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

9

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

10

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

11

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

12

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

13

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Length

Angle

Slope

Area

Volume

Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

14

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

15

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

16

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

17

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal
Position

Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

18

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal
Position

Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

19

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal
Position

Hue

Texture

Connection

Containment

Density

Saturation

Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

20

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal
Position

Hue

Texture

Connection

Containment

Density

Saturation

Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

21

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal
Position

Hue

Texture

Connection

Containment

Density

Saturation

Length

Angle

Slope

Area

Volume

Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

22

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Quantitative
Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Volume

Ordinal
Position

Hue

Texture

Connection

Containment

Density

Saturation

Shape

Length

Angle

Slope

Area

Volume

Nominal

J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Transactions on Graphics 5(2), 1986

Bar Chart

2

Quantitative
dependent

variable

Discrete/nominal
independent variable

Benefits from both
position (top of bar)
and length (size of bar)

Line Chart

3

Quantitative
continuous
dependent

variable

Quantitative continuous
independent variable

Benefits from
position but
not length

Scatter Plot

4

Quantitative
independent

variable

Quantitative
independent variable

Relies mostly
on position,
but clusters
also yield
density

Table

6

Discrete/nominal
independent

variable

Discrete/nominal
independent variable

Benefits from
position only

(notice the lateral
inhibition flashing?)

What to Use?

7

Nominal or
Q. Discrete

Nominal or
Q. Discrete

Quantitative
Discrete

Table

Bar

Quantitative
Continuous

Quantitative
Continuous

Line

Quantitative
Continuous

Scatter Gantt

Gantt

Bar

Bar

Ind.

Dep.

Independent