程序代写代做代考 algorithm python import Tree

import Tree

verbose = False
def printV(*args):
if verbose:
print(*args)

# A Python implementation of the AIMA CYK-Parse algorithm in Fig. 23.5 (p. 837).
def CYKParse(words, grammar):
T = {}
P = {}
# Instead of explicitly initializing all P[X, i, k] to 0, store
# only non-0 keys, and use this helper function to return 0 as needed.
def getP(X, i, k):
key = str(X) + ‘/’ + str(i) + ‘/’ + str(k)
if key in P:
return P[key]
else:
return 0
# Insert lexical categories for each word
for i in range(len(words)):
for X, p in getGrammarLexicalRules(grammar, words[i]):
P[X + ‘/’ + str(i) + ‘/’ + str(i)] = p
T[X + ‘/’ + str(i) + ‘/’ + str(i)] = Tree.Tree(X, None, None, lexiconItem=words[i])
printV(‘P:’, P)
printV(‘T:’, [str(t)+’:’+str(T[t]) for t in T])
# Construct X_i:j from Y_i:j + Z_j+i:k, shortest spans first
for i, j, k in subspans(len(words)):
for X, Y, Z, p in getGrammarSyntaxRules(grammar):
printV(‘i:’, i, ‘j:’, j, ‘k:’, k, ”, X, ‘->’, Y, Z, ‘[‘+str(p)+’]’,
‘PYZ =’ ,getP(Y, i, j), getP(Z, j+1, k), p, ‘=’, getP(Y, i, j) * getP(Z, j+1, k) * p)
PYZ = getP(Y, i, j) * getP(Z, j+1, k) * p
if PYZ > getP(X, i, k):
printV(‘ inserting from’, i, ‘-‘, k, ‘ ‘, X, ‘->’, T[Y+’/’+str(i)+’/’+str(j)], T[Z+’/’+str(j+1)+’/’+str(k)],
‘because’, PYZ, ‘=’, getP(Y, i, j), ‘*’, getP(Z, j+1, k), ‘*’, p, ‘>’, getP(X, i, k), ‘=’,
‘getP(‘ + X + ‘,’ + str(i) + ‘,’ + str(k) + ‘)’)
P[X + ‘/’ + str(i) + ‘/’ + str(k)] = PYZ
T[X + ‘/’ + str(i) + ‘/’ + str(k)] = Tree.Tree(X, T[Y+’/’+str(i)+’/’+str(j)], T[Z+’/’+str(j+1)+’/’+str(k)])
printV(‘T:’, [str(t)+’:’+str(T[t]) for t in T])
return T, P

# Python uses 0-based indexing, requiring some changes from the book’s
# 1-based indexing: i starts at 0 instead of 1
def subspans(N):
for length in range(2, N+1):
for i in range(N+1 – length):
k = i + length – 1
for j in range(i, k):
yield i, j, k

# These two getXXX functions use yield instead of return so that a single pair can be sent back,
# and since that pair is a tuple, Python permits a friendly ‘X, p’ syntax
# in the calling routine.
def getGrammarLexicalRules(grammar, word):
for rule in grammar[‘lexicon’]:
if rule[1] == word:
yield rule[0], rule[2]

def getGrammarSyntaxRules(grammar):
rulelist = []
for rule in grammar[‘syntax’]:
yield rule[0], rule[1], rule[2], rule[3]

# ‘Grammar’ here is used to include both the syntax part and the lexicon part.

# E0 from AIMA, ps. 834. Note that some syntax rules were added or modified
# to shoehorn the rules into Chomsky Normal Form.
def getGrammarE0():
return {
‘syntax’ : [
[‘S’, ‘NP’, ‘VP’, 0.9 * 0.45 * 0.6],
[‘S’, ‘Pronoun’, ‘VP’, 0.9 * 0.25 * 0.6],
[‘S’, ‘Name’, ‘VP’, 0.9 * 0.10 * 0.6],
[‘S’, ‘Noun’, ‘VP’, 0.9 * 0.10 * 0.6],
[‘S’, ‘NP’, ‘Verb’, 0.9 * 0.45 * 0.4],
[‘S’, ‘Pronoun’, ‘Verb’, 0.9 * 0.25 * 0.4],
[‘S’, ‘Name’, ‘Verb’, 0.9 * 0.10 * 0.4],
[‘S’, ‘Noun’, ‘Verb’, 0.9 * 0.10 * 0.4],
[‘S’, ‘S’, ‘Conj+S’, 0.1],
[‘Conj+S’, ‘Conj’, ‘S’, 1.0],
[‘NP’, ‘Article’, ‘Noun’, 0.25],
[‘NP’, ‘Article+Adjs’, ‘Noun’, 0.15],
[‘NP’, ‘Article+Adjective’, ‘Noun’, 0.05],
[‘NP’, ‘Digit’, ‘Digit’, 0.15],
[‘NP’, ‘NP’, ‘PP’, 0.2],
[‘NP’, ‘NP’, ‘RelClause’, 0.15],
[‘NP’, ‘NP’, ‘Conj+NP’, 0.05],
[‘Article+Adjs’, ‘Article’, ‘Adjs’, 1.0],
[‘Article+Adjective’, ‘Article’, ‘Adjective’, 1.0],
[‘Conj+NP’, ‘Conj’, ‘NP’, 1.0],
[‘VP’, ‘VP’, ‘NP’, 0.6 * 0.55],
[‘VP’, ‘VP’, ‘Adjective’, 0.6 * 0.1],
[‘VP’, ‘VP’, ‘PP’, 0.6 * 0.2],
[‘VP’, ‘VP’, ‘Adverb’, 0.6 * 0.15],
[‘VP’, ‘Verb’, ‘NP’, 0.4 * 0.55],
[‘VP’, ‘Verb’, ‘Adjective’, 0.4 * 0.1],
[‘VP’, ‘Verb’, ‘PP’, 0.4 * 0.2],
[‘VP’, ‘Verb’, ‘Adverb’, 0.4 * 0.15],
[‘Adjs’, ‘Adjective’, ‘Adjs’, 0.8],
[‘PP’, ‘Prep’, ‘NP’, 0.65],
[‘PP’, ‘Prep’, ‘Pronoun’, 0.2],
[‘PP’, ‘Prep’, ‘Name’, 0.1],
[‘PP’, ‘Prep’, ‘Noun’, 0.05],
[‘RelClause’, ‘RelPro’, ‘VP’, 0.6],
[‘RelClause’, ‘RelPro’, ‘Verb’, 0.4]
],
‘lexicon’ : [
[‘Noun’, ‘stench’, 0.05],
[‘Noun’, ‘breeze’, 0.05],
[‘Noun’, ‘wumpus’, 0.05],
[‘Noun’, ‘pits’, 0.05],
[‘Noun’, ‘dungeon’, 0.05],
[‘Noun’, ‘frog’, 0.05],
[‘Noun’, ‘balrog’, 0.7],
[‘Verb’, ‘is’, 0.1],
[‘Verb’, ‘feel’, 0.1],
[‘Verb’, ‘smells’, 0.1],
[‘Verb’, ‘stinks’, 0.05],
[‘Verb’, ‘wanders’, 0.65],
[‘Adjective’, ‘right’, 0.1],
[‘Adjective’, ‘dead’, 0.05],
[‘Adjective’, ‘smelly’, 0.02],
[‘Adjective’, ‘breezy’, 0.02],
[‘Adjective’, ‘green’, 0.81],
[‘Adverb’, ‘here’, 0.05],
[‘Adverb’, ‘ahead’, 0.05],
[‘Adverb’, ‘nearby’, 0.02],
[‘Adverb’, ‘below’, 0.88],
[‘Pronoun’, ‘me’, 0.1],
[‘Pronoun’, ‘you’, 0.03],
[‘Pronoun’, ‘I’, 0.1],
[‘Pronoun’, ‘it’, 0.1],
[‘Pronoun’, ‘she’, 0.67],
[‘RelPro’, ‘that’, 0.4],
[‘RelPro’, ‘which’, 0.15],
[‘RelPro’, ‘who’, 0.2],
[‘RelPro’, ‘whom’, 0.02],
[‘RelPro’, ‘whoever’, 0.23],
[‘Name’, ‘Ali’, 0.01],
[‘Name’, ‘Bo’, 0.01],
[‘Name’, ‘Boston’, 0.01],
[‘Name’, ‘Marios’, 0.97],
[‘Article’, ‘the’, 0.4],
[‘Article’, ‘a’, 0.3],
[‘Article’, ‘an’, 0.05],
[‘Article’, ‘every’, 0.05],
[‘Prep’, ‘to’, 0.2],
[‘Prep’, ‘in’, 0.1],
[‘Prep’, ‘on’, 0.05],
[‘Prep’, ‘near’, 0.10],
[‘Prep’, ‘alongside’, 0.55],
[‘Conj’, ‘and’, 0.5],
[‘Conj’, ‘or’, 0.1],
[‘Conj’, ‘but’, 0.2],
[‘Conj’, ‘yet’, 0.2],
[‘Digit’, ‘0’, 0.1],
[‘Digit’, ‘1’, 0.1],
[‘Digit’, ‘2’, 0.1],
[‘Digit’, ‘3’, 0.1],
[‘Digit’, ‘4’, 0.1],
[‘Digit’, ‘5’, 0.1],
[‘Digit’, ‘6’, 0.1],
[‘Digit’, ‘7’, 0.1],
[‘Digit’, ‘8’, 0.1],
[‘Digit’, ‘9’, 0.1]
]
}

# To experiment with the ‘garden path’ sentence ‘the old man the boat’
def getGrammarGardenPath():
return {
‘syntax’ : [
[‘S’, ‘NP’, ‘VP’, 0.25],
[‘S’, ‘Noun’, ‘VP’, 0.25],
[‘S’, ‘NP’, ‘Verb’, 0.25],
[‘S’, ‘Noun’, ‘Verb’, 0.25],
[‘NP’, ‘Article’, ‘Noun’, 0.4],
[‘NP’, ‘Article+Adjs’, ‘Noun’, 0.2],
[‘NP’, ‘Article+Adjective’, ‘Noun’, 0.4],
[‘Article+Adjs’, ‘Article’, ‘Adjs’, 1.0],
[‘Article+Adjective’, ‘Article’, ‘Adjective’, 1.0],
[‘Adjs’, ‘Adjective’, ‘Adjs’, 0.8],
[‘VP’, ‘Verb’, ‘NP’, 1.0],
],
‘lexicon’ : [
[‘Noun’, ‘man’, 0.5],
[‘Noun’, ‘old’, 0.1],
[‘Noun’, ‘boat’, 0.4],
[‘Verb’, ‘man’, 0.1],
[‘Verb’, ‘sail’, 0.1],
[‘Verb’, ‘think’, 0.8],
[‘Adjective’, ‘old’, 0.1],
[‘Adjective’, ‘young’, 0.1],
[‘Adjective’, ‘red’, 0.8],
[‘Article’, ‘the’, 0.4],
[‘Article’, ‘a’, 0.3],
[‘Article’, ‘an’, 0.05],
[‘Article’, ‘every’, 0.05]
]
}

# To experiment with ‘I saw a man with my telescope’
def getGrammarTelescope():
return {
‘syntax’ : [
[‘S’, ‘Pronoun’, ‘VP’, 1],
[‘VP’, ‘Verb’, ‘NP’, 0.6],
[‘VP’, ‘Verb’, ‘NP+AdverbPhrase’, 0.4],
[‘NP’, ‘Article’, ‘Noun’, 0.3],
[‘NP’, ‘Adjective’, ‘Noun’, 0.3],
[‘NP’, ‘NP’, ‘AdjectivePhrase’, 0.4],
[‘NP+AdverbPhrase’, ‘NP’, ‘AdverbPhrase’, 1.0],
[‘AdverbPhrase’, ‘Preposition’, ‘NP’, 1.0],
],
‘lexicon’ : [
[‘Pronoun’, ‘I’, 1.0],
[‘Noun’, ‘man’, 0.8],
[‘Noun’, ‘telescope’, 0.2],
[‘Verb’, ‘saw’, 1.0],
[‘Article’, ‘the’, 0.7],
[‘Article’, ‘a’, 0.3],
[‘Adjective’, ‘my’, 1.0],
[‘Preposition’, ‘with’, 1.0],
]
}

# Sample sentences:
# Hi, I am Peter. I am Peter. Hi, my name is Peter. My name is Peter.
# What is the temperature in Irvine? What is the temperature in Irvine now?
# What is the temperature in Irvine tomorrow?
#
def getGrammarWeather():
return {
‘syntax’ : [
[‘S’, ‘Greeting’, ‘S’, 0.25],
[‘S’, ‘NP’, ‘VP’, 0.25],
[‘S’, ‘Pronoun’, ‘VP’, 0.25],
[‘S’, ‘WQuestion’, ‘VP’, 0.25],
[‘VP’, ‘Verb’, ‘NP’, 0.4],
[‘VP’, ‘Verb’, ‘Name’, 0.2],
[‘VP’, ‘Verb’, ‘NP’, 0.1],
[‘VP’, ‘Verb’, ‘NP+AdverbPhrase’, 0.3],
[‘NP’, ‘Article’, ‘Noun’, 0.5],
[‘NP’, ‘Adjective’, ‘Noun’, 0.5],
[‘NP+AdverbPhrase’, ‘NP’, ‘AdverbPhrase’, 0.2],
[‘NP+AdverbPhrase’, ‘Noun’, ‘AdverbPhrase’, 0.2],
[‘NP+AdverbPhrase’, ‘Noun’, ‘Adverb’, 0.2],
[‘NP+AdverbPhrase’, ‘NP’, ‘Adverb’, 0.15],
[‘NP+AdverbPhrase’, ‘AdverbPhrase’, ‘NP’, 0.05],
[‘NP+AdverbPhrase’, ‘AdverbPhrase’, ‘Noun’, 0.05],
[‘NP+AdverbPhrase’, ‘Adverb’, ‘Noun’, 0.05],
[‘NP+AdverbPhrase’, ‘Adverb’, ‘NP+AdverbPhrase’, 0.05],
[‘NP+AdverbPhrase’, ‘Adverb’, ‘NP’, 0.05],
[‘AdverbPhrase’, ‘Preposition’, ‘NP’, 0.2],
[‘AdverbPhrase’, ‘Preposition’, ‘Name’, 0.2],
[‘AdverbPhrase’, ‘Adverb’, ‘AdverbPhrase’, 0.2],
[‘AdverbPhrase’, ‘AdverbPhrase’, ‘Adverb’, 0.4],
],
‘lexicon’ : [
[‘Greeting’, ‘hi’, 0.5],
[‘Greeting’, ‘hello’, 0.5],
[‘WQuestion’, ‘what’, 0.5],
[‘WQuestion’, ‘when’, 0.25],
[‘WQuestion’, ‘which’, 0.25],
[‘Verb’, ‘am’, 0.5],
[‘Verb’, ‘is’, 0.5],
[‘Name’, ‘Peter’, 0.1],
[‘Name’, ‘Sue’, 0.1],
[‘Name’, ‘Irvine’, 0.8],
[‘Pronoun’, ‘I’, 1.0],
[‘Noun’, ‘man’, 0.2],
[‘Noun’, ‘name’, 0.2],
[‘Noun’, ‘temperature’, 0.6],
[‘Article’, ‘the’, 0.7],
[‘Article’, ‘a’, 0.3],
[‘Adjective’, ‘my’, 1.0],
[‘Adverb’, ‘now’, 0.4],
[‘Adverb’, ‘today’, 0.3],
[‘Adverb’, ‘tomorrow’, 0.3],
[‘Preposition’, ‘with’, 0.5],
[‘Preposition’, ‘in’, 0.5],
]
}

# Unit testing code
if __name__ == ‘__main__’:
verbose = True
#CYKParse([‘the’, ‘wumpus’, ‘is’, ‘dead’], getGrammarE0())
#CYKParse([‘the’, ‘wumpus’, ‘is’], getGrammarE0())

#CYKParse([‘the’, ‘old’, ‘man’, ‘the’, ‘boat’], getGrammarGardenPath())
#CYKParse([‘I’, ‘saw’, ‘a’, ‘man’, ‘with’, ‘my’, ‘telescope’], getGrammarTelescope())
#CYKParse([‘my’, ‘name’, ‘is’, ‘Peter’], getGrammarWeather())
#CYKParse([‘hi’, ‘I’, ‘am’, ‘Peter’], getGrammarWeather())
CYKParse([‘what’, ‘is’, ‘the’, ‘temperature’, ‘in’, ‘Irvine’], getGrammarWeather())
#CYKParse([‘what’, ‘is’, ‘the’, ‘temperature’, ‘in’, ‘Irvine’, ‘now’], getGrammarWeather())
#CYKParse([‘what’, ‘is’, ‘the’, ‘temperature’, ‘now’, ‘in’, ‘Irvine’], getGrammarWeather())
#CYKParse([‘what’, ‘is’, ‘now’, ‘the’, ‘temperature’, ‘in’, ‘Irvine’], getGrammarWeather())

# Hi, I am Peter. I am Peter. Hi, my name is Peter. My name is Peter.
# What is the temperature in Irvine? What is the temperature in Irvine now?
# What is the temperature in Irvine tomorrow?