程序代写代做代考 Logic Tutorial 1 Solutions

Logic Tutorial 1 Solutions

Logic Tutorial 2 Solutions

1) a.

i) False A sees B is false, and B sees C is true. False  True is False.

ii) True B next-to D is True. True  anything is True.

iii) True F above A is False. anything  False is False, and ¬ (False) is
True.

iv) True A sees E is False. So ¬[A sees E] is True, and anything → True is True.

v) True Consider ¬([B above E]  [B next-to C]). This is ¬(True False)

which is ¬(False) which is True.

b. The following is an example:

A B D

F C

E

2.

a. Contingency

P Q PQ P(PQ)

T T T T

T F T T

F T T F

F F F F

b. Contingency

P Q PQ PQ (PQ)(PQ)

T T T T T

T F T F F

F T T T T

F F F T F

c. Inconsistency

P Q P QP P(QP) QP Given wff c.

T T F T T F F

T F F T T F F

F T T F F T F

F F T T T F F

d. Tautology

P Q QP P(QP) P(QP)P

T T T T T

T F T T T

F T T F T

F F F F T

e. Tautology

P Q PQ P PQ Given wff in e.

T T T F T T

T F F F F T

F T T T T T

F F T T T T

f. Tautology – I leave the details to you!