程序代写代做代考 exam

exam

Q1

Let be the number of edges and be the sum of the degree.

Base case.

= 1, there is only 1 edge, thus the total degree is 2, thus .

Suppose ,

When , we can select an edge from the undirected graph,

removing this edge from the graph, now it has edges and the remaining graph

has total degree, now add the edge , only the degree of and increases 1, other

nodes’s degree doesn’t change, thus now .

From above, we have proved that .

Q2

2.a.i

2.a.ii

2.a.iii

2.a.iv

2.b.i

2.b.ii

2.c.i

2.c.ii

Q3

3.a

h(29) = 29 % 11 = 7

h(7) = 7 % 11 = 7 7 + 1^2 = 8

h(18) = 18 % 11 = 7 (7 + 2^2) % 11 = 0

Index 0 1 2 3 4 5 6 7 8 9 10

Key 18 33 55 6 29 7 19

h(6) = 6 % 11 = 6

h(19) = 19 % 11 = 8 8 + 1^2 = 9

h(33) = 33 % 11 = 0 (0 + 1^2) = 1

h(55) = 55 % 11 = 0 (0 + 2^2) = 4

3.b

33 would be no longer findable using the contains method.

Because location 0 set to NULL. When we want to find 33, we first lcoate in 33 % 11 = 0, but
location 0 is null, thus return empty.

Q4

int[] merge(int[] a, int[] b, int[] c) {
int[] d = new int[a.length + b.length + c.length];

int i = 0;

int u = 0;
int v = 0;
int w = 0;

int x;
int y;
int z;

while (i < d.length) { if (u < a.length) { x = a[u]; } else { x = Integer.MAX_VALUE; } if (v < b.length) { y = b[v]; } else { y = Integer.MAX_VALUE; } Q5 if (w < c.length) { z = c[w]; } else { z = Integer.MAX_VALUE; } int minv; if (x <= y && x <= z) { u++; minv = x; } else if (y <= x && y <= z) { v++; minv = y; } else { w++; minv = z; } d[i] = minv; i++; } return d; } // Q5 int countInternal(TreeNode root) { if (root == null) { return 0; } if (root.firstChild == null) { return countInternal(root.nextSibling); }else { Q6 return 1 + countInternal(root.firstChild) + countInternal(root.nextSibling); } } Q7 // Q7 boolean testMinHeap(int A[]) { int N = A.length - 1; for(int i=1; i<=N; i++) { if(2*i <= N) { if(A[i] > A[2*i])
{
return false;
}
}

if(2*i + 1 <= N) { if(A[i] > A[2*i + 1])
{
return false;
}
}

edges examined accept or rejected

(E F) 1 accept

(C D) 2 accept

(F I) 5 accept

(D H) 6 accept

(C G) 7 accept

(D E) 7 accept

(E I) 8 rejected

(G H) 10 rejected

(B E) 11 accept

(H I) 12 rejected

(A D) 13 accept

Q8

8.a

No it is not strongly connected. Because there is no path from node F to node C.

8.b

}

return true;
}

Q9

Step Vertex Chosen A B C D E F G

0 —- Infinity Infinity 0 Infinity Infinity Infinity Infinity

1 C Infinity Infinity 0 7 7 Infinity Infinity

2 D 9 Infinity 0 7 7 13 Infinity

3 E 9 Infinity 0 7 7 8 Infinity

4 F 9 Infinity 0 7 7 8 Infinity

5 A 9 14 0 7 7 8 Infinity

6 B 9 14 0 7 7 8 15

Q10

If we can solve in time, then it means it is solved in polynomial time, and this problem is
in . Because the bounded travelling salesperson problem is a NP-complete problem. Now a
NP-complete problem is in , because every problem in can be reduced to NP-complete
problem. Thus, every problem in can be now solved in polynomial time. Thus, we have

.

Q11

It is a directed graph. It is not weakly connected. It is not strongly-connected. It has 5 nodes and
2 edges.

Q1
Q2
Q3
3.a
3.b

Q4
Q5
Q6
Q7
Q8
8.a
8.b

Q9
Q10
Q11