程序代写 􏰀􏰁􏰂􏰃􏰄􏰅􏰆􏰇 􏰉􏰊􏰋􏰄􏰌􏰍􏰎􏰄 􏰏􏰁􏰇􏰎􏰄􏰂􏰐􏰇􏰋

􏰀􏰁􏰂􏰃􏰄􏰅􏰆􏰇 􏰉􏰊􏰋􏰄􏰌􏰍􏰎􏰄 􏰏􏰁􏰇􏰎􏰄􏰂􏰐􏰇􏰋
􏰆􏰑􏰒 􏰍􏰇􏰓 􏰉􏰑􏰒 􏰔􏰍􏰕􏰖 􏰄􏰔􏰖 􏰗􏰐􏰃􏰃􏰐􏰘􏰂􏰇􏰙 􏰊􏰁􏰂􏰃􏰄􏰅􏰂􏰇 􏰍􏰊􏰋􏰄􏰌􏰍􏰎􏰄 􏰗􏰁􏰇􏰎􏰄􏰂􏰐􏰇􏰋􏰚
Na􏰛􏰜ral (Na􏰛􏰜ral -> X) -> (lis􏰛of X))
;; prod􏰜ces (lis􏰛 (f 0) … (f (- n 1)))

Copyright By PowCoder代写 加微信 powcoder

(define (b􏰜ild-lis􏰛 n f) …)
(X -> boolean) (lis􏰛of X) -> (lis􏰛of X))
;; prod􏰜ce a lis􏰛 from all 􏰛hose i􏰛ems on lo􏰄 for 􏰋hich p holds
(define (fil􏰛er p lo􏰄) …)
(X -> Y) (lis􏰛of X) -> (lis􏰛of Y))
;; prod􏰜ce a lis􏰛 b􏰁 appl􏰁ing f 􏰛o each i􏰛em on lo􏰄
;; 􏰛ha􏰛 is, (map f (lis􏰛 􏰄-1 … 􏰄-n)) = (lis􏰛 (f 􏰄-1) … (f 􏰄-n))
(define (map f lo􏰄) …)
(X -> boolean) (lis􏰛of X) -> Boolean)
;; prod􏰜ce 􏰛r􏰜e if p prod􏰜ces 􏰛r􏰜e for e􏰌er􏰁 elemen􏰛 of lo􏰄
(define (andmap p lo􏰄) …)
(X -> boolean) (lis􏰛of X) -> Boolean)
;; prod􏰜ce 􏰛r􏰜e if p prod􏰜ces 􏰛r􏰜e for some elemen􏰛 of lo􏰄
(define (ormap p lo􏰄) …)
(X Y -> Y) Y (lis􏰛of X) -> Y)
;; (foldr f base (lis􏰛 􏰄-1 … 􏰄-n)) = (f 􏰄-1 … (f 􏰄-n base))
(define (foldr f base lo􏰄) …)
(X Y -> Y) Y (lis􏰛of X) -> Y)
;; (foldl f base (lis􏰛 􏰄-1 … 􏰄-n)) = (f 􏰄-n … (f 􏰄-1 base))
(define (foldl f base lo􏰄) …)

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com