CS代考计算机代写 ## Exercise Chapter 3

## Exercise Chapter 3
## Problem 3

## Background
install.packages(“AER”)
suppressMessages(library(“AER”))
## attach the data-set Journals to the current R-session
data(“Journals”, package = “AER”)
## ?Journals # Check the help file # 一组数据,美国图书馆经济期刊的订阅量
## Select variable “subs” and “price”
journals <- Journals[, c("subs", "price")] # sub为订阅量,price为订阅价格;方括号为select;逗号前是行,逗号后是列,这里选中列 ## Define variable 'journals-price per citation' journals$citeprice <- Journals$price/Journals$citations # 定义列;$用来引用Journals中的数据 ## Define variable 'journals-age' journals$age <- 2020 - Journals$foundingyear # 定义列;foundingyear为期刊成立年份 ## Check variable name in 'journals' names(journals) ## [1] "subs" "price" "citeprice" "age" ## Estimate the coefficients beta_1 and beta_2 of the linear regression model: log(Y) = beta_1 + beta_2*log(X) + eps ## log(Y) = log(subs) and log(X) = log(citeprice) ## Problem 3a 画residuals - fitted value图看是否有heteroscedastic error-term variances(异方差) ## Solution jour_lm <- lm(log(subs) ~ log(citeprice), data = journals) # lm 用于拟合线性模型,格式 lm(Y~X1+...+Xk, data), Y~X1+...+Xk 为通过X预测Y,其中+用于分隔预测变量 ## Diagnostic plot residuals against fitted values ## plot(y = resid(jour_lm), x = fitted(jour_lm)) # 朴素画法 ## Or 高级画法 plot(jour_lm, which = 1) # which是图的类型 ## 图中点的分布明显左边更高,右边更低,说明不均匀,有different variance in the error term,所以说是heteroscedastic ## Problem 3b Estimate the standard error of the OLS estimator beta_hat_2 ## Solution ## HC robust variance estimation library("sandwich") ## Robust estimation of the variance of \hat\beta Var_hat_beta_HC3 <- sandwich::vcovHC(jour_lm, type = "HC3") # sandwich::vcovHC为Heteroscedasticity-Consistent Covariance Matrix Estimation;HC3最常用,作业都用了HC3 # type为estimation type ## Robust standard error of \hat\beta_2 sqrt(diag(Var_hat_beta_HC3)[2]) # sqrt开方;diag(x)用x中元素作为主对角元素创造对角矩阵;方括号选出2代表2. variance component ## log(citeprice) ## 0.03447364 ## Comparison with the classic standard error estimation sqrt(diag(vcov(jour_lm))[2]) # Calculate Variance-Covariance Matrix for a Fitted Model Object ## log(citeprice) ## 0.0356132