CS代考计算机代写 ## —- fig.align=”center”, echo=FALSE, fig.width = 8, fig.height = 5, out.width = “1\\textwidth”————————–

## —- fig.align=”center”, echo=FALSE, fig.width = 8, fig.height = 5, out.width = “1\\textwidth”————————–
# When fixing rate (lambda) and changing shape (r) for Gamma Distribution,
# When the shape (r) increases, based on the formula,
# the mean increases (shift to the right),
# the variance increases
# the skewness decreases
# the excess kurtosis decreases

### F Distribution
# Plot 1: Fix df2 and changing df1
par(mfrow=c(1,2))
curve(expr = df(x = x, df1 = 3, df2 = 5),
xlab = “”, ylab = “”, main = “”,
lwd = 2, col = 1, xlim = c(0, 4),
ylim = c(0, 1))

for (i in 1:2) {
curve(expr = df(x = x, df1 = 3,
df2=c(15,500)[i]),
lwd = 2, col = (2:3)[i], add = TRUE)
}
legend(x = “topright”, legend = c(“F(3,5)”, “F(3,15)”, “F(3,500)”),
lwd = 2, col = 1:3)
curve(expr = df(x = x, df1 = 1, df2 = 30),
xlab = “”, ylab = “”, main = “”,
lwd = 2, col = 1, xlim = c(0, 4),
ylim = c(0, 1))

for (i in 1:2) {
curve(expr = df(x = x, df1 = c(3,15)[i],
df2=30),
lwd = 2, col = (4:6)[i], add = TRUE)
}
legend(x = “topright”, legend = c(“F(1,30)”, “F(3,30)”, “F(15,30)”),
lwd = 2, col = 4:6)

## —- fig.align=”center”, echo=FALSE, fig.width = 8, fig.height = 5, out.width = “1\\textwidth”————————–
# plot the standard normal density
curve(dnorm(x),
xlim = c(-4, 4),
xlab = “”,
lty = 2,
ylab = “”,
main = “”)

# plot the t density for M=2
curve(dt(x, df = 2),
xlim = c(-4, 4),
col = 2,
add = T)

# plot the t density for M=4
curve(dt(x, df = 4),
xlim = c(-4, 4),
col = 3,
add = T)

# plot the t density for M=25
curve(dt(x, df = 25),
xlim = c(-4, 4),
col = 4,
add = T)

# add a legend
legend(“topright”, bty=”n”,
c(“N(0, 1)”, expression(t[2]), expression(t[2]), expression(t[25])),
col = 1:4,
lty = c(2, 1, 1, 1))

## —- fig.align=”center”, echo=FALSE, fig.width = 8, fig.height = 5, out.width = “1\\textwidth”————————–
library(“scales”)
curve(expr = df(x = x, df1 = 9, df2 = 120),
xlab = “”, ylab = “”, main = “”,
lwd = 2, col = 1, xlim = c(0, 4),
ylim = c(0, 1), xaxs=”i”,yaxs=”i”)

alpha <- 0.05 q <- qf(p = 1-alpha, df1 = 9, df2 = 120) xx <- seq(0,q,len=25) yy <- df(x = xx, df1 = 9, df2 = 120) polygon(x = c(xx,rev(xx)), y=c(yy, rep(0,length(yy))), border = NA, col = alpha("green", 0.25)) q <- qf(p = 1-alpha, df1 = 9, df2 = 120) xx <- seq(q,4,len=25) yy <- df(x = xx, df1 = 9, df2 = 120) polygon(x = c(xx,rev(xx)), y=c(yy, rep(0,length(yy))), border = NA, col = alpha("red", 0.25)) lines(x=c(0,q-0.02),y=c(0,0), col="darkgreen", lwd=10) lines(x=c(q+0.02,4),y=c(0,0), col="red", lwd=10) legend("topright", pch=c(22,NA, 22, NA), lty=c(NA,1,NA,1), lwd=c(NA,4,NA,4), cex=1, col = c(alpha("green", 0.25),"darkgreen",alpha("red", 0.25),"red"), legend=c(expression(1-alpha==~"95% of"~F['9,120']),"Non-Rejection Region", expression(alpha==~"5% of"~F['9,120']),"Rejection Region"), bty="n", pt.bg = c(alpha("green", 0.25),alpha("green", 0.25),alpha("red", 0.25),alpha("red", 0.25))) curve(expr = df(x = x, df1 = 9, df2 = 120), lwd = 2, col = 1, add=TRUE, from = 0, to = 4) lines(x=c(q,q), y=c(0,.6),lwd=2,lty=2) text(x = q, y = .65, labels = expression(c[alpha]==1.9588)) ## ------------------------------------------------------------------------------------------------------------------------ df1 <- 9 # numerator df df2 <- 120 # denominator df alpha <- 0.05 # significance level ## Critical value c_alpha (= (1-alpha) quantile): c_alpha <- qf(p = 1-alpha, df1 = df1, df2 = df2) c_alpha ## ------------------------------------------------------------------------------------------------------------------------ alpha <- 0.01 ## Critical value c_\alpha = 1-\alpha-quantile: c_alpha <- qf(p = 1-alpha, df1 = df1, df2 = df2) c_alpha ## ---- fig.align="center", echo=FALSE, fig.width = 8, fig.height = 5, out.width = "1\\textwidth"-------------------------- library("scales") curve(expr = dt(x = x, df = 12), xlab = "", ylab = "", main = "", lwd = 2, col = 1, xlim = c(-5, 5), ylim = c(0, .6), xaxs="i",yaxs="i") alpha <- 0.05/2 q <- qt(p = 1-alpha, df=12) xx1 <- seq(-5,-q,len=25) yy1 <- dt(x = xx1, df = 12) xx2 <- seq(q,5,len=25) yy2 <- dt(x = xx2, df = 12) xx3 <- seq(-q,q,len=25) yy3 <- dt(x = xx3, df = 12) polygon(x = c(xx1,rev(xx1)), y=c(yy1, rep(0,length(yy1))), border = NA, col = alpha("red", 0.25)) polygon(x = c(xx2,rev(xx2)), y=c(yy2, rep(0,length(yy2))), border = NA, col = alpha("red", 0.25)) polygon(x = c(xx3,rev(xx3)), y=c(yy3, rep(0,length(yy3))), border = NA, col = alpha("green", 0.25)) legend("topright", pch=c(22,22), lty=c(NA,NA), lwd=c(NA,NA), cex=1, col = c(alpha("green", 0.25),alpha("red", 0.25)), legend=c(expression("95% of"~t['12']), expression("5% of"~t['12'])), bty="n", pt.bg = c(alpha("green", 0.25),alpha("red", 0.25))) curve(expr = dt(x = x, df= 12), lwd = 2, col = 1, add=TRUE) lines(x=c(q,q), y=c(0,.35),lwd=2,lty=2) lines(x=c(-q,-q), y=c(0,.35),lwd=2,lty=2) text(x = q, y = .45, labels = expression(c[alpha/2]==2.18)) text(x = -q, y = .45, labels = expression(-c[alpha/2]==-2.18)) ## ---- fig.align="center", echo=FALSE, fig.width = 8, fig.height = 5, out.width = "1\\textwidth"-------------------------- library("scales") alpha <- 0.05 q <- qt(p = 1-alpha, df=12) xx1 <- seq(-5,-q,len=25) yy1 <- dt(x = xx1, df = 12) xx2 <- seq(-q,5,len=25) yy2 <- dt(x = xx2, df = 12) ## xx3 <- seq(q,5,len=25) yy3 <- dt(x = xx3, df = 12) xx4 <- seq(-5,q,len=25) yy4 <- dt(x = xx4, df = 12) par(mfrow=c(1,2)) curve(expr = dt(x = x, df = 12), xlab = "", ylab = "", main = "", lwd = 2, col = 1, xlim = c(-5, 5), ylim = c(0, .6), xaxs="i",yaxs="i") polygon(x = c(xx1,rev(xx1)), y=c(yy1, rep(0,length(yy1))), border = NA, col = alpha("red", 0.25)) polygon(x = c(xx2,rev(xx2)), y=c(yy2, rep(0,length(yy2))), border = NA, col = alpha("green", 0.25)) lines(x=c(-q,-q), y=c(0,.35),lwd=2,lty=2) text(x = -q, y = .45, labels = expression(-c[alpha]==-1.78)) legend("topright", pch=c(22,22), lty=c(NA,NA), lwd=c(NA,NA), cex=1, col = c(alpha("green", 0.25),alpha("red", 0.25)), legend=c(expression("95% of"~t['12']), expression("5% of"~t['12'])), bty="n", pt.bg = c(alpha("green", 0.25),alpha("red", 0.25))) ########### curve(expr = dt(x = x, df = 12), xlab = "", ylab = "", main = "", lwd = 2, col = 1, xlim = c(-5, 5), ylim = c(0, .6), xaxs="i",yaxs="i") polygon(x = c(xx3,rev(xx3)), y=c(yy3, rep(0,length(yy3))), border = NA, col = alpha("red", 0.25)) polygon(x = c(xx4,rev(xx4)), y=c(yy4, rep(0,length(yy4))), border = NA, col = alpha("green", 0.25)) lines(x=c(q,q), y=c(0,.35),lwd=2,lty=2) text(x = q, y = .45, labels = expression(c[alpha]==1.78)) legend("topright", pch=c(22,22), lty=c(NA,NA), lwd=c(NA,NA), cex=1, col = c(alpha("green", 0.25),alpha("red", 0.25)), legend=c(expression("95% of"~t['12']), expression("5% of"~t['12'])), bty="n", pt.bg = c(alpha("green", 0.25),alpha("red", 0.25))) par(mfrow=c(1,1)) ## ------------------------------------------------------------------------------------------------------------------------ df <- 16 # degrees of freedom alpha <- 0.05 # significance level ## One-sided critical value (= (1-alpha) quantile): c_oneSided <- qt(p = 1-alpha, df = df) c_oneSided ## Two-sided critical value (= (1-alpha/2) quantile): c_twoSided <- qt(p = 1-alpha/2, df = df) ## lower critical value -c_twoSided ## upper critical value c_twoSided ## ---- fig.align="center", echo=FALSE, fig.width = 8, fig.height = 5, out.width = "1\\textwidth"-------------------------- library("scales") # transperent color mean.alt <- 2 x <- seq(-4, 4, length=1000) hx <- dnorm(x) alpha <- 0.05 plot(x, hx, type="n", xlim=c(-4, 7), ylim=c(0, 0.65), ylab = "", xlab = "", axes=T) #axis(1) xfit2 <- x + mean.alt yfit2 <- dnorm(x) ## Print null hypothesis area polygon(c(min(x), x, max(x)), c(0, hx, 0), col =alpha("grey", 0.5), border=alpha("grey", 0.9)) ub <- max(x) lb <- round(qnorm(1-alpha),2) ## The green area: Power i <- xfit2 >= lb
polygon(c(min(xfit2[i]), xfit2[i], max(xfit2[i])),
c(0, yfit2[i], 0),
col=alpha(“green”, 0.25),
border=alpha(“green”, 0.25))

## The blue area: P(Type II error)
lb <- min(xfit2) ub <- round(qnorm(1-alpha),2) i <- xfit2 >= lb & xfit2 <= ub polygon(c(lb,xfit2[i],ub), c(0,yfit2[i],0), col=alpha("darkblue", 0.25), border=alpha("darkblue", 0.25)) lines(x=c(ub,ub), y=c(0,.47),lwd=2,lty=2) text(x = ub, y = .57, labels = expression(c[alpha]==1.64)) text(x=0+.25,y=.425, "N(0,1)", pos=2) text(x=2+.5,y=.425, "N(2,1)", pos=4) legend(x=-4.5,y=.65, title=NULL, bty="n", c(expression("Null Distribution"~"N(0,1)"),"P(Type II Error)","P(Type I Error)", expression(paste("Power")))[-3], fill=c(alpha("grey", 0.5), alpha("darkblue", 0.25), alpha("red", 0.25), alpha("green", 0.5))[-3], horiz=FALSE) ## ------------------------------------------------------------------------------------------------------------------------ ## Function to generate artificial data ## If X=NULL: new X variables are generated ## If the user gives X variables, ## the sampling of new Y variables is conditionally on ## the given X variables. myDataGenerator <- function(n, beta, X=NULL, sigma=3){ if(is.null(X)){ X <- cbind(rep(1, n), runif(n, 2, 10), runif(n,12, 22)) } eps <- rnorm(n, sd=sigma) Y <- X %*% beta + eps data <- data.frame("Y"=Y, "X_1"=X[,1], "X_2"=X[,2], "X_3"=X[,3]) ## return(data) } ## Define a true beta vector beta_true <- c(2,3,4) ## Check: ## Generate Y and X data test_data <- myDataGenerator(n = 10, beta=beta_true) ## Generate new Y data conditionally on X X_cond <- cbind(test_data$X_1, test_data$X_2, test_data$X_3) test_data_new <- myDataGenerator(n = 10, beta = beta_true, X = X_cond) ## compare round(head(test_data, 3), 2) # New Y, new X round(head(test_data_new, 3), 2) # New Y, conditionally on X ## ---- fig.align="center", echo=TRUE, fig.width = 8, fig.height = 5, out.width = "1\\textwidth"--------------------------- set.seed(123) n <- 10 # a small sample size beta_true <- c(2,3,4) # true data vector sigma <- 3 # true var of the error term ## Let's generate a data set from our data generating process mydata <- myDataGenerator(n = n, beta=beta_true) X_cond <- cbind(mydata$X_1, mydata$X_2, mydata$X_3) ## True mean and variance of the true normal distribution ## of beta_hat_2|X: # true mean beta_true_2 <- beta_true[2] # true variance var_true_beta_2 <- sigma^2 * diag(solve(t(X_cond) %*% X_cond))[2] ## Let's generate 5000 realizations from beta_hat_2 ## conditionally on X and check whether their ## distribution is close to the true normal distribution rep <- 5000 # MC replications beta_hat_2 <- rep(NA, times=rep) ## for(r in 1:rep){ MC_data <- myDataGenerator(n = n, beta = beta_true, X = X_cond) lm_obj <- lm(Y ~ X_2 + X_3, data = MC_data) beta_hat_2[r] <- coef(lm_obj)[2] } ## Compare ## True beta_2 versus average of beta_hat_2 estimates beta_true_2 round(mean(beta_hat_2), 4) ## True variance of beta_hat_2 versus ## empirical variance of beta_hat_2 estimates round(var_true_beta_2, 4) round(var(beta_hat_2), 4) ## True normal distribution of beta_hat_2 versus ## empirical density of beta_hat_2 estimates library("scales") curve(expr = dnorm(x, mean = beta_true_2, sd=sqrt(var_true_beta_2)), xlab="",ylab="", col=gray(.2), lwd=3, lty=1, xlim=range(beta_hat_2), ylim=c(0,1.1)) lines(density(beta_hat_2, bw = bw.SJ(beta_hat_2)), col=alpha("blue",.5), lwd=3) legend("topleft", lty=c(1,1), lwd=c(3,3), col=c(gray(.2), alpha("blue",.5)), bty="n", legend= c(expression( "Theoretical Gaussian Density of"~hat(beta)[2]~'|'~X), expression( "Empirical Density Estimation based on MC realizations from"~ hat(beta)[2]~'|'~X))) ## ---- fig.align="center", echo=TRUE, fig.width = 8, fig.height = 5, out.width = "1\\textwidth"--------------------------- set.seed(123) ## Let's generate 5000 realizations from beta_hat_2 ## WITHOUT conditioning on X beta_hat_2_uncond <- rep(NA, times=rep) ## for(r in 1:rep){ MC_data <- myDataGenerator(n = n, beta = beta_true) lm_obj <- lm(Y ~ X_2 + X_3, data = MC_data) beta_hat_2_uncond[r] <- coef(lm_obj)[2] } ## Compare ## True beta_2 versus average of beta_hat_2 estimates beta_true_2 round(mean(beta_hat_2_uncond), 4) ## True variance of beta_hat_2 versus ## empirical variance of beta_hat_2 estimates round(var_true_beta_2, 4) round(var(beta_hat_2_uncond), 4) ## Plot curve(expr = dnorm(x, mean = beta_true_2, sd=sqrt(var_true_beta_2)), xlab="",ylab="", col=gray(.2), lwd=3, lty=1, xlim=range(beta_hat_2_uncond), ylim=c(0,1.1)) lines(density(beta_hat_2_uncond, bw=bw.SJ(beta_hat_2_uncond)), col=alpha("blue",.5), lwd=3) legend("topleft", lty=c(1,1), lwd=c(3,3), col=c(gray(.2), alpha("blue",.5)), bty="n", legend= c(expression( "Theoretical Gaussian Density of"~hat(beta)[2]~'|'~X), expression( "Empirical Density Estimation based on MC realizations from"~ hat(beta)[2]))) ## ------------------------------------------------------------------------------------------------------------------------ suppressMessages(library("car")) # for linearHyothesis() # ?linearHypothesis ## Estimate the linear regression model parameters lm_obj <- lm(Y ~ X_2 + X_3, data = mydata) ## Option 1: car::linearHypothesis(model = lm_obj, hypothesis.matrix = c("X_2=3", "X_3=4")) ## Option 2: R <- rbind(c(0,1,0), c(0,0,1)) car::linearHypothesis(model = lm_obj, hypothesis.matrix = R, rhs = c(3,4)) ## ------------------------------------------------------------------------------------------------------------------------ ## Let's generate 5000 F-test decisions and check ## whether the empirical rate of type I errors is ## close to the theoretical significance level. rep <- 5000 # MC replications F_test_pvalues <- rep(NA, times=rep) ## for(r in 1:rep){ ## generate new MC_data conditionally on X_cond MC_data <- myDataGenerator(n = n, beta = beta_true, X = X_cond) lm_obj <- lm(Y ~ X_2 + X_3, data = MC_data) ## save the p-value p <- linearHypothesis(lm_obj, c("X_2=3", "X_3=4"))$`Pr(>F)`[2]
F_test_pvalues[r] <- p } ## signif_level <- 0.05 rejections <- F_test_pvalues[F_test_pvalues < signif_level] round(length(rejections)/rep, 3) ## signif_level <- 0.01 rejections <- F_test_pvalues[F_test_pvalues < signif_level] round(length(rejections)/rep, 3) ## ------------------------------------------------------------------------------------------------------------------------ set.seed(321) rep <- 5000 # MC replications F_test_pvalues <- rep(NA, times=rep) ## for(r in 1:rep){ ## generate new MC_data conditionally on X_cond MC_data <- myDataGenerator(n = n, beta = beta_true, X = X_cond) lm_obj <- lm(Y ~ X_2 + X_3, data = MC_data) ## save p-values of all rep-many tests F_test_pvalues[r] <- linearHypothesis(lm_obj, c("X_2=4","X_3=4"))$`Pr(>F)`[2]
}
##
signif_level <- 0.05 rejections <- F_test_pvalues[F_test_pvalues < signif_level] length(rejections)/rep ## ------------------------------------------------------------------------------------------------------------------------ car::linearHypothesis(lm_obj, c("X_2=4", "X_3=4")) ## ------------------------------------------------------------------------------------------------------------------------ signif_level <- 0.05 ## 95% CI for beta_2 confint(lm_obj, parm = "X_2", level = 1 - signif_level) ## 95% CI for beta_3 confint(lm_obj, parm = "X_3", level = 1 - signif_level) ## ---- fig.align="center", echo=TRUE, fig.width = 8, fig.height = 5, out.width = "1\\textwidth"--------------------------- ## Let's generate 1000 CIs set.seed(123) signif_level <- 0.05 rep <- 5000 # MC replications confint_m <- matrix(NA, nrow=2, ncol=rep) ## for(r in 1:rep){ ## generate new MC_data conditionally on X_cond MC_data <- myDataGenerator(n = n, beta = beta_true, X = X_cond) lm_obj <- lm(Y ~ X_2 + X_3, data = MC_data) ## save the p-value CI <- confint(lm_obj, parm="X_2", level=1-signif_level) confint_m[,r] <- CI } ## inside_CI <- confint_m[1,] <= beta_true_2 & beta_true_2 <= confint_m[2,] ## CI-lower, CI-upper, beta_true_2 inside? head(cbind(t(confint_m), inside_CI)) round(length(inside_CI[inside_CI == FALSE])/rep, 2) nCIs <- 100 plot(x=0,y=0,type="n",xlim=c(0,nCIs),ylim=range(confint_m[,1:nCIs]), ylab="", xlab="Resamplings", main="Confidence Intervals") for(r in 1:nCIs){ if(inside_CI[r]==TRUE){ lines(x=c(r,r), y=c(confint_m[1,r], confint_m[2,r]), lwd=2, col=gray(.5,.5)) }else{ lines(x=c(r,r), y=c(confint_m[1,r], confint_m[2,r]), lwd=2, col="darkred") } } axis(4, at=beta_true_2, labels = expression(beta[2])) abline(h=beta_true_2)