CS代考计算机代写 #include

#include

#include “devices/input.h”
#include “devices/serial.h”
#include “devices/intq.h”
#include “devices/timer.h”
#include “threads/io.h”
#include “threads/interrupt.h”
#include “threads/thread.h”

/* Register definitions for the 16550A UART used in PCs.
The 16550A has a lot more going on than shown here, but this
is all we need.

Refer to [PC16650D] for hardware information. */

/* I/O port base address for the first serial port. */
#define IO_BASE 0x3f8

/* DLAB=0 registers. */
#define RBR_REG (IO_BASE + 0) /* Receiver Buffer Reg. (read-only). */
#define THR_REG (IO_BASE + 0) /* Transmitter Holding Reg. (write-only). */
#define IER_REG (IO_BASE + 1) /* Interrupt Enable Reg.. */

/* DLAB=1 registers. */
#define LS_REG (IO_BASE + 0) /* Divisor Latch (LSB). */
#define MS_REG (IO_BASE + 1) /* Divisor Latch (MSB). */

/* DLAB-insensitive registers. */
#define IIR_REG (IO_BASE + 2) /* Interrupt Identification Reg. (read-only) */
#define FCR_REG (IO_BASE + 2) /* FIFO Control Reg. (write-only). */
#define LCR_REG (IO_BASE + 3) /* Line Control Register. */
#define MCR_REG (IO_BASE + 4) /* MODEM Control Register. */
#define LSR_REG (IO_BASE + 5) /* Line Status Register (read-only). */

/* Interrupt Enable Register bits. */
#define IER_RECV 0x01 /* Interrupt when data received. */
#define IER_XMIT 0x02 /* Interrupt when transmit finishes. */

/* Line Control Register bits. */
#define LCR_N81 0x03 /* No parity, 8 data bits, 1 stop bit. */
#define LCR_DLAB 0x80 /* Divisor Latch Access Bit (DLAB). */

/* MODEM Control Register. */
#define MCR_OUT2 0x08 /* Output line 2. */

/* Line Status Register. */
#define LSR_DR 0x01 /* Data Ready: received data byte is in RBR. */
#define LSR_THRE 0x20 /* THR Empty. */

/* Transmission mode. */
static enum { UNINIT, POLL, QUEUE } mode;

/* Data to be transmitted. */
static struct intq txq;

static void set_serial (int bps);
static void putc_poll (uint8_t);
static void write_ier (void);
static intr_handler_func serial_interrupt;

/* Initializes the serial port device for polling mode.
Polling mode busy-waits for the serial port to become free
before writing to it. It’s slow, but until interrupts have
been initialized it’s all we can do. */
static void
init_poll (void)
{
ASSERT (mode == UNINIT);
outb (IER_REG, 0); /* Turn off all interrupts. */
outb (FCR_REG, 0); /* Disable FIFO. */
set_serial (9600); /* 9.6 kbps, N-8-1. */
outb (MCR_REG, MCR_OUT2); /* Required to enable interrupts. */
intq_init (&txq);
mode = POLL;
}

/* Initializes the serial port device for queued interrupt-driven
I/O. With interrupt-driven I/O we don’t waste CPU time
waiting for the serial device to become ready. */
void
serial_init_queue (void)
{
enum intr_level old_level;

if (mode == UNINIT)
init_poll ();
ASSERT (mode == POLL);

intr_register_ext (0x20 + 4, serial_interrupt, “serial”);
mode = QUEUE;
old_level = intr_disable ();
write_ier ();
intr_set_level (old_level);
}

/* Sends BYTE to the serial port. */
void
serial_putc (uint8_t byte)
{
enum intr_level old_level = intr_disable ();

if (mode != QUEUE)
{
/* If we’re not set up for interrupt-driven I/O yet,
use dumb polling to transmit a byte. */
if (mode == UNINIT)
init_poll ();
putc_poll (byte);
}
else
{
/* Otherwise, queue a byte and update the interrupt enable
register. */
if (old_level == INTR_OFF && intq_full (&txq))
{
/* Interrupts are off and the transmit queue is full.
If we wanted to wait for the queue to empty,
we’d have to reenable interrupts.
That’s impolite, so we’ll send a character via
polling instead. */
putc_poll (intq_getc (&txq));
}

intq_putc (&txq, byte);
write_ier ();
}

intr_set_level (old_level);
}

/* Flushes anything in the serial buffer out the port in polling
mode. */
void
serial_flush (void)
{
enum intr_level old_level = intr_disable ();
while (!intq_empty (&txq))
putc_poll (intq_getc (&txq));
intr_set_level (old_level);
}

/* The fullness of the input buffer may have changed. Reassess
whether we should block receive interrupts.
Called by the input buffer routines when characters are added
to or removed from the buffer. */
void
serial_notify (void)
{
ASSERT (intr_get_level () == INTR_OFF);
if (mode == QUEUE)
write_ier ();
}

/* Configures the serial port for BPS bits per second. */
static void
set_serial (int bps)
{
int base_rate = 1843200 / 16; /* Base rate of 16550A, in Hz. */
uint16_t divisor = base_rate / bps; /* Clock rate divisor. */

ASSERT (bps >= 300 && bps <= 115200); /* Enable DLAB. */ outb (LCR_REG, LCR_N81 | LCR_DLAB); /* Set data rate. */ outb (LS_REG, divisor & 0xff); outb (MS_REG, divisor >> 8);

/* Reset DLAB. */
outb (LCR_REG, LCR_N81);
}

/* Update interrupt enable register. */
static void
write_ier (void)
{
uint8_t ier = 0;

ASSERT (intr_get_level () == INTR_OFF);

/* Enable transmit interrupt if we have any characters to
transmit. */
if (!intq_empty (&txq))
ier |= IER_XMIT;

/* Enable receive interrupt if we have room to store any
characters we receive. */
if (!input_full ())
ier |= IER_RECV;

outb (IER_REG, ier);
}

/* Polls the serial port until it’s ready,
and then transmits BYTE. */
static void
putc_poll (uint8_t byte)
{
ASSERT (intr_get_level () == INTR_OFF);

while ((inb (LSR_REG) & LSR_THRE) == 0)
continue;
outb (THR_REG, byte);
}

/* Serial interrupt handler. */
static void
serial_interrupt (struct intr_frame *f UNUSED)
{
/* Inquire about interrupt in UART. Without this, we can
occasionally miss an interrupt running under QEMU. */
inb (IIR_REG);

/* As long as we have room to receive a byte, and the hardware
has a byte for us, receive a byte. */
while (!input_full () && (inb (LSR_REG) & LSR_DR) != 0)
input_putc (inb (RBR_REG));

/* As long as we have a byte to transmit, and the hardware is
ready to accept a byte for transmission, transmit a byte. */
while (!intq_empty (&txq) && (inb (LSR_REG) & LSR_THRE) != 0)
outb (THR_REG, intq_getc (&txq));

/* Update interrupt enable register based on queue status. */
write_ier ();
}