CS代考计算机代写 ## —- fig.align=”center”————————————————————————————————-

## —- fig.align=”center”————————————————————————————————-
# Some given data
X_1 <- c(1.9,0.8,1.1,0.1,-0.1,4.4,4.6,1.6,5.5,3.4) X_2 <- c(66, 62, 64, 61, 63, 70, 68, 62, 68, 66) Y <- c(0.7,-1.0,-0.2,-1.2,-0.1,3.4,0.0,0.8,3.7,2.0) dataset <- cbind.data.frame(X_1,X_2,Y) ## Compute the OLS estimation my.lm <- lm(Y ~ X_1 + X_2, data = dataset) ## Plot sample regression surface library("scatterplot3d") # library for 3d plots plot3d <- scatterplot3d(x = X_1, y = X_2, z = Y, angle=33, scale.y=0.8, pch=16, color ="red", main ="OLS Regression Surface") plot3d$plane3d(my.lm, lty.box = "solid", col=gray(.5), draw_polygon=TRUE) ## ------------------------------------------------------------------------------------------------------------------------ set.seed(123) n <- 100 # Sample size X <- runif(n, 0, 10) # Relevant X variable X_ir <- runif(n, 5, 20) # Irrelevant X variable error <- rt(n, df = 10)*10 # True error Y <- 1 + 5 * X + error # Y variable lm1 <- summary(lm(Y~X)) # Correct OLS regression lm2 <- summary(lm(Y~X+X_ir))# OLS regression with X_ir lm1$r.squared < lm2$r.squared ## ---- fig.align="center"------------------------------------------------------------------------------------------------- set.seed(2) n <- 100 K <- 3 X <- matrix(runif(n*(K-1), 2, 10), n, K-1) X <- cbind(1,X) beta <- c(1,5,5) # heteroscedastic errors: sigma <- abs(X[,2] + X[,3])^1.5 error <- rnorm(n, mean = 0, sd=sigma) Y <- beta[1]*X[,1] + beta[2]*X[,2] + beta[3]*X[,3] + error ## lm_fit <- lm(Y~X -1 ) ## Caution! By default R computes the standard errors ## assuming homoscedastic errors. This can lead to ## false inferences under heteroscedastic errors. summary(lm_fit)$coefficients library("sandwich") # HC robust variance estimation library("lmtest") ## Robust estimation of the variance of \hat{\beta}: Var_beta_hat_robust <- sandwich::vcovHC(lm_fit, type="HC3") Var_beta_hat_robust ## Corresponding regression-output: lmtest::coeftest(lm_fit, vcov = Var_beta_hat_robust)