CS代考计算机代写 database Erlang Fortran Java Excel flex Hive compiler gui algorithm The Not So Short Introduction to LATEX2ε

The Not So Short Introduction to LATEX2ε
Or LATEX2ε in 139 minutes
by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl
Version 6.3, March 26, 2018

ii
Copyright ©1995-2016 Tobias Oetiker and Contributors. All rights reserved.
This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.
This document is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for
a particular purpose. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this document; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

Thank you!
Much of the material used in this introduction comes from an Austrian introduction to LATEX 2.09 written in German by:
Hubert Partl Zentraler Informatikdienst der Universität für Bodenkultur Wien
Irene Hyna Bundesministerium für Wissenschaft und Forschung Wien
Elisabeth Schlegl in Graz
If you are interested in the German document, you can find a version updated for LATEX2ε by Jörg Knappen at CTAN://info/lshort/german

iv
Thank you!
The following individuals helped with corrections, suggestions and material to improve this paper. They put in a big effort to help me get this document into its present shape. I would like to sincerely thank all of them. Naturally, all the mistakes you’ll find in this book are mine. If you ever find a word that is spelled correctly, it must have been one of the people below dropping me a line.
If you want to contribute to this booklet, you can find all the source code on https://github.com/oetiker/lshort. Your pull requests will be appreciated.
Eric Abrahamsen, Lenimar Nunes de Andrade, Eilinger August, Rosemary Bailey,
Barbara Beeton, Marc Bevand, Connor Blakey, Salvatore Bonaccorso, Pietro Braione,
Friedemann Brauer, Markus Brühwiler, Jan Busa, David Carlisle, Neil Carter,
Carl Cerecke, Mike Chapman, Pierre Chardaire, Xingyou Chen, Christopher Chin,
Diego Clavadetscher, Wim van Dam, Benjamin Deschwanden Jan Dittberner, Michael John Downes, Matthias Dreier, David Dureisseix, Hans Ehrbar, Elliot, Rockrush Engch, William Faulk,
Robin Fairbairns, Johan Falk, Jörg Fischer, Frank Fischli, Daniel Flipo, Frank, Mic Milic Frederickx, David Frey, Erik Frisk, Hans Fugal, Robert Funnell, Greg Gam- ble, Andy Goth, Cyril Goutte, Kasper B. Graversen, Arlo Griffiths, Alexandre Gui- mond, Neil Hammond, Christoph Hamburger, Rasmus Borup Hansen, Joseph Hil- ferty, Daniel Hirsbrunner, Martien Hulsen, Björn Hvittfeldt, Morten Høgholm, Werner Icking, Eric Jacoboni, Jakob, Alan Jeffrey, Martin Jenkins, Byron Jones, David Jones, Johannes-Maria Kaltenbach, Nils Kanning, Andrzej Kawalec, Chris- tian Kern, Alain Kessi, Axel Kielhorn, Sander de Kievit, Kjetil Kjernsmo, To- bias Klauser, Jörg Knappen, Michael Koundouros, Matt Kraai, Tobias Krewer, Flori Lambrechts, Mike Lee, Maik Lehradt, Rémi Letot, Axel Liljencrantz, Jasper Loy, Johan Lundberg, Martin Maechler, Alexander Mai, Claus Malten, Kevin Van Maren, Pablo Markin, I. J. Vera Marún, Hendrik Maryns, Chris McCormack, Aleksan- dar S. Milosevic, Henrik Mitsch, Stefan M. Moser, Armin Müller, Philipp Nagele, Richard Nagy, Manuel Oetiker, Urs Oswald, Hubert Partl, Marcelo Pasin, Mar-
tin Pfister, Lan Thuy Pham, Breno Pietracci, Demerson Andre Polli, Maksym Polyakov, Nikos Pothitos, John Refling, Mike Ressler, Brian Ripley, Kurt Rosenfeld, Bernd Rosen- lecher, Chris Rowley, Young U. Ryu, Risto Saarelma, András Salamon, José Car-
los Santos, Christopher Sawtell, Gilles Schintgen, Craig Schlenter, Hanspeter Schmid, Baron Schwartz, Jordi Serra i Solanich, Miles Spielberg, Susan Stewart, Matthieu Stigler, Geoffrey Swindale, Laszlo Szathmary, Boris Tobotras, Josef Tkadlec, Scott Veirs, Didier Verna, Carl-Gustav Werner, Fabian Wernli, Matthew Widmann, David Wood- house, Chris York, Rick Zaccone, Fritz Zaucker, and Mikhail Zotov.

Preface
LATEX [1] is a typesetting system that is very suitable for producing scien- tific and mathematical documents of high typographical quality. It is also suitable for producing all sorts of other documents, from simple letters to complete books. LATEX uses TEX [2] as its formatting engine.
This short introduction describes LATEX2ε and should be sufficient for most applications of LATEX. Refer to [1, 3] for a complete description of the LATEX system.
This introduction is split into 6 chapters:
Chapter 1 tells you about the basic structure of LATEX 2ε documents. You will also learn a bit about the history of LATEX. After reading this chapter, you should have a rough understanding how LATEX works.
Chapter 2 goes into the details of typesetting your documents. It explains most of the essential LATEX commands and environments. After read- ing this chapter, you will be able to write your first documents, with itemized lists, tables, graphics and floating bodies.
Chapter 3 explains how to typeset formulae with LATEX. Many examples demonstrate how to use one of LATEX’s main strengths. At the end of the chapter are tables listing all mathematical symbols available in LATEX.
Chapter 4 explains indexes, bibliography generation and some finer points about creating PDFs.
Chapter 5 shows how to use LATEX for creating graphics. Instead of draw- ing a picture with some graphics program, saving it to a file and then including it into LATEX, you describe the picture and have LATEX draw it for you.
Chapter 6 contains some potentially dangerous information about how to alter the standard document layout produced by LATEX. It will tell you how to change things such that the beautiful output of LATEX turns ugly or stunning, depending on your abilities.

vi
Preface
It is important to read the chapters in order—the book is not that big, after all. Be sure to carefully read the examples, because a lot of the information is in the examples placed throughout the book.
LATEX is available for most computers, from the PC and Mac to large UNIX and VMS systems. On many university computer clusters you will find that a LATEX installation is available, ready to use. Information on how to access the local LATEX installation should be provided in the Local Guide [5]. If you have problems getting started, ask the person who gave you this booklet. The scope of this document is not to tell you how to install and set up a LATEX system, but to teach you how to write your documents so that they can be processed by LATEX.
If you need to get hold of any LATEX related material, have a look at one of the Comprehensive TEX Archive Network (CTAN) sites. The homepage is at http://www.ctan.org.
You will find other references to CTAN throughout the book, especially pointers to software and documents you might want to download. Instead of writing down complete URLs, I just wrote CTAN: followed by whatever location within the CTAN tree you should go to.
If you want to run LATEX on your own computer, take a look at what is available from CTAN://systems.
If you have ideas for something to be added, removed or altered in this document, please let me know. I am especially interested in feedback from LATEX novices about which bits of this intro are easy to understand and which could be explained better.
Tobias Oetiker
OETIKER+PARTNER AG Aarweg 15
4600 Olten
Switzerland
The current version of this document is available on
CTAN://info/lshort

Contents
Thank you! iii
Preface v
1 Things You Need to Know 1
1.1 ABitofHistory ……………………. 1 1.1.1 TEX ………………………. 1 1.1.2 LATEX ……………………… 2
1.2 Basics …………………………. 2 1.2.1 Author, Book Designer, and Typesetter . . . . . . . . 2 1.2.2 LayoutDesign …………………. 2 1.2.3 AdvantagesandDisadvantages …………. 3
1.3 LATEXInputFiles……………………. 4
1.3.1 Spaces……………………… 4
1.3.2 SpecialCharacters ……………….. 5
1.3.3 LATEXCommands………………… 5
1.3.4 Comments……………………. 6
1.4 InputFileStructure ………………….. 7
1.5 ATypicalCommandLineSession …………… 7
1.6 TheLayoutoftheDocument ……………… 9 1.6.1 DocumentClasses ……………….. 9 1.6.2 Packages ……………………. 11 1.6.3 PageStyles …………………… 11
1.7 FilesYouMightEncounter ………………. 11
1.8 BigProjects………………………. 14
2 Typesetting Text 15
2.1 TheStructureofTextandLanguage………….. 15
2.2 LineBreakingandPageBreaking……………. 17
2.2.1 JustifiedParagraphs ………………. 17
2.2.2 Hyphenation ………………….. 18
2.3 Ready-MadeStrings ………………….. 19
2.4 SpecialCharactersandSymbols…………….. 19

viii
CONTENTS
2.4.1 QuotationMarks………………… 19 2.4.2 DashesandHyphens………………. 20 2.4.3 Tilde(∼) ……………………. 20 2.4.4 Slash(/)…………………….. 20 2.4.5 DegreeSymbol(◦) ……………….. 20 2.4.6 TheEuroCurrencySymbol(e). . . . . . . . . . . . . 21 2.4.7 Ellipsis(…) …………………… 21 2.4.8 Ligatures ……………………. 22 2.4.9 AccentsandSpecialCharacters . . . . . . . . . . . . . 22
2.5 InternationalLanguageSupport…………….. 22 2.5.1 PolyglossiaUsage………………… 23
2.6 TheSpaceBetweenWords……………….. 27
2.7 Titles,Chapters,andSections……………… 27
2.8 CrossReferences ……………………. 30
2.9 Footnotes ……………………….. 30
2.10EmphasizedWords…………………… 31 2.11Environments……………………… 31 2.11.1 Itemize, Enumerate, and Description . . . . . . . . . . 31 2.11.2 Flushleft,Flushright,andCenter . . . . . . . . . . . . 32 2.11.3 Quote,Quotation,andVerse ………….. 33 2.11.4 Abstract…………………….. 33 2.11.5 PrintingVerbatim ……………….. 34 2.11.6 Tabular …………………….. 34 2.12IncludingGraphicsandImages …………….. 37 2.13FloatingBodies…………………….. 39
Typesetting Mathematical Formulae 43
3.1 TheAMS-LATEXbundle ………………… 43
3.2 SingleEquations ……………………. 43
3.2.1 MathMode…………………… 45
3.3 BuildingBlocksofaMathematicalFormula . . . . . . . . . . 46
3.4 Single Equations that are Too Long: multline . . . . . . . . . 51
3.5 MultipleEquations…………………… 52
3.5.1 Problems with Traditional Commands . . . . . . . . . 52 3.5.2 IEEEeqnarrayEnvironment…………… 54 3.5.3 CommonUsage…………………. 55
3.6 ArraysandMatrices ………………….. 57
3.7 SpacinginMathMode…………………. 59 3.7.1 Phantoms……………………. 60
3.8 FiddlingwiththeMathFonts……………… 60 3.8.1 BoldSymbols………………….. 61
3.9 Theorems,Lemmas,……………………. 61 3.9.1 ProofsandEnd-of-ProofSymbol . . . . . . . . . . . . 62
3.10ListofMathematicalSymbols……………… 65
3

CONTENTS
4 Specialities
4.1 Bibliography ………………………
4.2 Indexing…………………………
4.3 FancyHeaders ……………………..
4.4 TheVerbatimPackage………………….
4.5 InstallingExtraPackages ………………..
4.6 LATEXandPDF……………………..
4.6.1 HypertextLinks ………………… 4.6.2 ProblemswithLinks………………. 4.6.3 ProblemswithBookmarks…………….
4.7 WorkingwithXƎLATEXandPDF ……………. 4.7.1 TheFonts…………………….
4.7.2 Compatibility Between XƎLATEX and pdfLATEX . . . .
4.8 CreatingPresentations………………….
5 Producing Mathematical Graphics
5.1 Overview ………………………..
5.2 ThepictureEnvironment……………….. 5.2.1 BasicCommands………………… 5.2.2 LineSegments …………………. 5.2.3 Arrows …………………….. 5.2.4 Circles……………………… 5.2.5 TextandFormulas……………….. 5.2.6 \multiputand\linethickness . . . . . . . . . . . . 5.2.7 Ovals ……………………… 5.2.8 Multiple Use of Predefined Picture Boxes . . . . . . . 5.2.9 QuadraticBézierCurves…………….. 5.2.10 Catenary ……………………. 5.2.11 Rapidity in the Special Theory of Relativity . . . . . .
5.3 ThePGFandTikZGraphicsPackages. . . . . . . . . . . . .
6 Customising LATEX
ix
73
73
74
76
77
77
78
79
82
82
83
83
84
85
89
89
90
90
91
92
93
94
94
95
96
97
98
99
99
103
6.1 New Commands, Environments and Packages . . . . . . . . . 6.1.1 NewCommands …………………104 6.1.2 NewEnvironments………………..105 6.1.3 ExtraSpace……………………105 6.1.4 Command-lineLATEX……………….106 6.1.5 YourOwnPackage………………..107
6.2 FontsandSizes……………………..107
6.2.1 FontChangingCommands ……………107
6.2.2 Danger,WillRobinson,Danger………….110
6.2.3 Advice………………………111
6.3 Spacing …………………………111 6.3.1 LineSpacing …………………..111
103

x
CONTENTS
6.3.2 ParagraphFormatting………………112 6.3.3 HorizontalSpace …………………113 6.3.4 VerticalSpace…………………..114 PageLayout……………………….114 MoreFunWithLengths…………………117 Boxes ………………………….117 Rules…………………………..119
6.4 6.5 6.6 6.7
A Installing LATEX 121
A.1 WhattoInstall……………………..121
A.2 CrossPlatformEditor ………………….121
A.3 TEXonmacOS ……………………..122
A.3.1 TEXDistribution…………………122 A.3.2 macOSTEXEditor………………..122 A.3.3 TreatyourselftoPDFView ……………122
A.4 TEXonWindows…………………….122 A.4.1 GettingTEX …………………..122 A.4.2 ALATEXeditor ………………….123 A.4.3 DocumentPreview………………..123 A.4.4 Workingwithgraphics………………123
A.5 TEXonLinux………………………123
Bibliography 125 Index 128

List of Figures
1.1 AMinimalLATEXFile. …………………. 7
1.2 ExampleofaRealisticJournalArticle.. . . . . . . . . . . . . 8
2.1 Allinonepreamble…………………… 24
2.2 Example code for including test.png into a document. . . . 38
4.1 ExamplefancyhdrSetup…………………. 76
4.2 Samplecodeforthebeamerclass ……………. 86
6.1 ExamplePackage. ……………………107
6.2 Layoutparametersforthisbook. …………….115

List of Tables
1.1 DocumentClasses. …………………… 9
1.2 DocumentClassOptions. ……………….. 10
1.3 Some of the Packages Distributed with LATEX. . . . . . . . . . 12
1.4 ThePredefinedPageStylesofLATEX. . . . . . . . . . . . . . . 12
2.1 AbagfullofEurosymbols ………………. 21
2.2 AccentsandSpecialCharacters……………… 23
2.3 KeyNamesforgraphicxPackage. ……………. 38
2.4 FloatPlacingPermissions………………… 39
3.1 MathModeAccents…………………… 65
3.2 GreekLetters………………………. 65
3.3 BinaryRelations…………………….. 66
3.4 BinaryOperators. …………………… 66
3.5 BIGOperators……………………… 67
3.6 Arrows. ………………………… 67
3.7 ArrowsasAccents……………………. 67
3.8 Delimiters. ………………………. 68
3.9 LargeDelimiters…………………….. 68
3.10MiscellaneousSymbols. ………………… 68 3.11Non-MathematicalSymbols……………….. 68 3.12AMSDelimiters. ……………………. 69 3.13AMSGreekandHebrew. ……………….. 69 3.14MathAlphabets. ……………………. 69 3.15AMSBinaryOperators…………………. 69 3.16AMSBinaryRelations. ………………… 70 3.17AMSArrows………………………. 71 3.18 AMS Negated Binary Relations and Arrows. . . . . . . . . . 72 3.19AMSMiscellaneous. ………………….. 72
4.1 IndexKeySyntaxExamples. ……………… 75
6.1 Fonts. ………………………….108 6.2 FontSizes…………………………108

xiv LIST OF TABLES
6.3 AbsolutePointSizesinStandardClasses. . . . . . . . . . . . 109 6.4 MathFonts………………………..109 6.5 TEXUnits. ……………………….114

Chapter 1
Things You Need to Know
The first part of this chapter presents a short overview of the philosophy and history of LATEX2ε. The second part focuses on the basic structures of a LATEX document. After reading this chapter, you should have a rough knowledge of how LATEX works, which you will need to understand the rest of this book.
1.1 A Bit of History 1.1.1 TEX
TEX is a computer program created by Donald E. Knuth [2]. It is aimed at typesetting text and mathematical formulae. Knuth started writing the TEX typesetting engine in 1977 to explore the potential of the digital printing equipment that was beginning to infiltrate the publishing industry at that time, especially in the hope that he could reverse the trend of deteriorating typographical quality that he saw affecting his own books and articles. TEX as we use it today was released in 1982, with some slight enhancements added in 1989 to better support 8-bit characters and multiple languages. TEX is renowned for being extremely stable, for running on many different kinds of computers, and for being virtually bug free. The version number of TEX is converging to π and is now at 3.141592653.
TEX is pronounced “Tech,” with a “ch” as in the German word “Ach”1 or in the Scottish “Loch.” The “ch” originates from the Greek alphabet where X is the letter “ch” or “chi”. TEX is also the first syllable of the Greek word technique. In an ASCII environment, TEX becomes TeX.
1In german there are actually two pronunciations for “ch” and one might assume that the soft “ch” sound from “Pech” would be a more appropriate. Asked about this, Knuth wrote in the German Wikipedia: I do not get angry when people pronounce TEX in their favorite way … and in Germany many use a soft ch because the X follows the vowel e, not the harder ch that follows the vowel a. In Russia, ‘tex’ is a very common word, pronounced ‘tyekh’. But I believe the most proper pronunciation is heard in Greece, where you have the harsher ch of ach and Loch.

2
Things You Need to Know
1.1.2 LATEX
LATEX enables authors to typeset and print their work at the highest typo- graphical quality, using a predefined, professional layout. LATEX was origi- nally written by Leslie Lamport [1]. It uses the TEX formatter as its type- setting engine. These days LATEX is maintained by the LATEX Project.
LATEX is pronounced “Lay-tech” or “Lah-tech.” If you refer to LATEX in an ASCII environment, you type LaTeX. LATEX2ε is pronounced “Lay-tech two e” and typed LaTeX2e.
1.2 Basics
1.2.1 Author, Book Designer, and Typesetter
To publish something, authors give their typed manuscript to a publishing company. One of their book designers then decides the layout of the docu- ment (column width, fonts, space before and after headings, …). The book designer writes his instructions into the manuscript and then gives it to a typesetter, who typesets the book according to these instructions.
A human book designer tries to find out what the author had in mind while writing the manuscript. He decides on chapter headings, citations, examples, formulae, etc. based on his professional knowledge and from the contents of the manuscript.
In a LATEX environment, LATEX takes the role of the book designer and uses TEX as its typesetter. But LATEX is “only” a program and therefore needs more guidance. The author has to provide additional information to describe the logical structure of his work. This information is written into the text as “LATEX commands.”
This is quite different from the WYSIWYG2 approach that most modern word processors, such as MS Word or LibreOffice, take. With these appli- cations, authors specify the document layout interactively while typing text into the computer. They can see on the screen how the final work will look when it is printed.
When using LATEX it is not normally possible to see the final output while typing the text, but the final output can be previewed on the screen after processing the file with LATEX. Then corrections can be made before actually sending the document to the printer.
1.2.2 Layout Design
Typographical design is a craft. Unskilled authors often commit serious formatting errors by assuming that book design is mostly a question of aesthetics—“If a document looks good artistically, it is well designed.” But
2What you see is what you get.

1.2 Basics 3
as a document has to be read and not hung up in a picture gallery, the readability and understandability is much more important than the beautiful look of it. Examples:
• The font size and the numbering of headings have to be chosen to make the structure of chapters and sections clear to the reader.
• The line length has to be short enough not to strain the eyes of the reader, while long enough to fill the page beautifully.
With WYSIWYG systems, authors often generate aesthetically pleasing documents with very little or inconsistent structure. LATEX prevents such formatting errors by forcing the author to declare the logical structure of his document. LATEX then chooses the most suitable layout.
1.2.3 Advantages and Disadvantages
When people from the WYSIWYG world meet people who use LATEX, they often discuss “the advantages of LATEX over a normal word processor” or the opposite. The best thing to do when such a discussion starts is to keep a low profile, since such discussions often get out of hand. But sometimes there is no escaping …
So here is some ammunition. The main advantages of LATEX over normal word processors are the following:
• Professionally crafted layouts are available, which make a document really look as if “printed.”
• The typesetting of mathematical formulae is supported in a convenient way.
• Users only need to learn a few easy-to-understand commands that specify the logical structure of a document. They almost never need to tinker with the actual layout of the document.
• Even complex structures such as footnotes, references, table of con- tents, and bibliographies can be generated easily.
• Free add-on packages exist for many typographical tasks not directly supported by basic LATEX. For example, packages are available to include POSTSCRIPT graphics or to typeset bibliographies conforming to exact standards. Many of these add-on packages are described in The LATEX Companion [3].
• LATEX encourages authors to write well-structured texts, because this is how LATEX works—by specifying structure.

4
Things You Need to Know
• TEX, the formatting engine of LATEX2ε, is highly portable and free. Therefore the system runs on almost any hardware platform available.
LATEX also has some disadvantages, and I guess it’s a bit difficult for me to find any sensible ones, though I am sure other people can tell you hundreds 😉
• LATEX does not work well for people who have sold their souls …
• Although some parameters can be adjusted within a predefined docu- ment layout, the design of a whole new layout is difficult and takes a lot of time.3
• It is very hard to write unstructured and disorganized documents.
• Your hamster might, despite some encouraging first steps, never be able to fully grasp the concept of Logical Markup.
1.3 LATEX Input Files
The input for LATEX is a plain text file. On Unix/Linux text files are pretty common. On windows, one would use Notepad to create a text file. It contains the text of the document, as well as the commands that tell LATEX how to typeset the text. If you are working with a LATEX IDE, it will contain a program for creating LATEX input files in text format.
1.3.1 Spaces
“Whitespace” characters, such as blank or tab, are treated uniformly as “space” by LATEX. Several consecutive whitespace characters are treated as one “space”. Whitespace at the start of a line is generally ignored, and a single line break is treated as “whitespace”.
An empty line between two lines of text defines the end of a paragraph. Several empty lines are treated the same as one empty line. The text below is an example. On the left hand side is the text from the input file, and on the right hand side is the formatted output.
It does not matter whether you
enter one or several spaces
after a word.
An empty line starts a new
paragraph.
3Rumour says that this is one of the key elements that will be addressed in the upcoming LATEX3 system.
It does not matter whether you enter one or several spaces after a word.
An empty line starts a new paragraph.

1.3 LATEX Input Files 5 1.3.2 Special Characters
The following symbols are reserved characters that either have a special meaning under LATEX or are not available in all the fonts. If you enter them directly in your text, they will normally not print, but rather coerce LATEX to do things you did not intend.
#$%^&_{}~\
As you will see, these characters can be used in your documents all the same by using a prefix backslash:
\# \$ \% \^{} \& \_ \{ \} \~{}
\textbackslash
The other symbols and many more can be printed with special commands in mathematical formulae or as accents. The backslash character \ can not be entered by adding another backslash in front of it (\\); this sequence is used for line breaking. Use the \textbackslash command instead.
1.3.3 LATEX Commands
LATEX commands are case sensitive, and take one of the following two for- mats:
• They start with a backslash \ and then have a name consisting of letters only. Command names are terminated by a space, a number or any other ‘non-letter.’
• They consist of a backslash and exactly one non-letter.
• Many commands exist in a ‘starred variant’ where a star is appended to the command name.
LATEX ignores whitespace after commands. If you want to get a space after a command, you have to put either an empty parameter {} and a blank or a special spacing command after the command name. The empty param- eter {} stops LATEX from eating up all the white space after the command name.
New \TeX users may miss whitespaces
after a command. % renders wrong
Experienced \TeX{} users are
\TeX perts, and know how to use
whitespaces. % renders correct
Some commands require a parameter, which has to be given between curly braces { } after the command name. Some commands take optional
#$%ˆ&_{} ̃\
New TEXusers may miss whitespaces af- ter a command. Experienced TEX users are TEXperts, and know how to use white- spaces.

6
Things You Need to Know
parameters, which are inserted after the command name in square brack- ets [ ].
\command[optional parameter]{parameter}
The next examples use some LATEX commands. Don’t worry about them;
they will be explained later.
You can \textsl{lean} on me!
Please, start a new line
right here!\newline
Thank you!
1.3.4 Comments
When LATEX encounters a % character while processing an input file, it ig- nores the rest of the present line, the line break, and all whitespace at the beginning of the next line.
This can be used to write notes into the input file, which will not show up in the printed version.
This is an % stupid
% Better: instructive <---- example: Supercal% ifragilist% icexpialidocious The % character can also be used to split long input lines where no whitespace or line breaks are allowed. For longer comments you could use the comment environment provided by the verbatim package. Add the line \usepackage{verbatim} to the preamble of your document as explained below to use this command. This is another \begin{comment} rather stupid, but helpful \end{comment} example for embedding comments in your document. Note that this won’t work inside complex environments, like math for example. You can lean on me! Please, start a new line right here! Thank you! This is an example: Supercalifragilisticex- pialidocious This is another example for embedding comments in your document. 1.4 Input File Structure 7 1.4 Input File Structure When LATEX 2ε processes an input file, it expects it to follow a certain struc- ture. Thus every input file must start with the command \documentclass{...} This specifies what sort of document you intend to write. After that, add commands to influence the style of the whole document, or load packages that add new features to the LATEX system. To load such a package you use the command \usepackage{...} When all the setup work is done,4 you start the body of the text with the command \begin{document} Now you enter the text mixed with some useful LATEX commands. At the end of the document you add the \end{document} command, which tells LATEX to call it a day. Anything that follows this command will be ignored by LATEX. Figure 1.1 shows the contents of a minimal LATEX 2ε file. A slightly more complicated input file is given in Figure 1.2. 1.5 A Typical Command Line Session I bet you must be dying to try out the neat small LATEX input file shown on page 7. Here is some help: LATEX itself comes without a GUI or fancy buttons to press. It is just a program that crunches away at your input file. Some LATEX installations feature a graphical front-end where there is a LATEX button to start compiling your input file. On other systems there 4The area between \documentclass and \begin{document} is called the preamble. \documentclass{article} \begin{document} Small is beautiful. \end{document} Figure 1.1: A Minimal LATEX File. 8 Things You Need to Know might be some typing involved, so here is how to coax LATEX into compiling your input file on a text based system. Please note: this description assumes that a working LATEX installation already sits on your computer.5 1. Edit/Create your LATEX input file. This file must be plain ASCII text. On Unix all the editors will create just that. On Windows you might want to make sure that you save the file in ASCII or Plain Text format. When picking a name for your file, make sure it bears the extension .tex. 2. Open a shell or cmd window, cd to the directory where your input file is located and run LATEX on your input file. If successful you will end up with a .pdf file. It may be necessary to run LATEX several times to get the table of contents and all internal references right. When your input file has a bug LATEX will tell you about it and stop processing your input file. Type ctrl-D to get back to the command line. 5This is the case with most well groomed Unix Systems, and ... Real Men use Unix, so ... 😉 \documentclass[a4paper,11pt]{article} % define the title \author{H.~Partl} \title{Minimalism} \begin{document} % generates the title \maketitle % insert the table of contents \tableofcontents \section{Some Interesting Words} Well, and here begins my lovely article. \section{Good Bye World} \ldots{} and here it ends. \end{document} Figure 1.2: Example of a Realistic Journal Article. Note that all the com- mands you see in this example will be explained later in the introduction. xelatex foo.tex 1.6 The Layout of the Document 9 1.6 The Layout of the Document 1.6.1 Document Classes The first information LATEX needs to know when processing an input file is the type of document the author wants to create. This is specified with the \documentclass command. Here class specifies the type of document to be created. Table 1.1 lists the document classes explained in this introduction. The LATEX2ε distribution provides additional classes for other documents, including letters and slides. The options parameter customizes the behavior of the document class. The options have to be separated by commas. The most common options for the standard document classes are listed in Table 1.2. Example: An input file for a LATEX document could start with the line \documentclass[11pt,twoside,a4paper]{article} which instructs LATEX to typeset the document as an article with a base font size of eleven points, and to produce a layout suitable for double sided printing on A4 paper. Table 1.1: Document Classes. article for articles in scientific journals, presentations, short reports, pro- gram documentation, invitations, ... proc a class for proceedings based on the article class. minimal is as small as it can get. It only sets a page size and a base font. It is mainly used for debugging purposes. report for longer reports containing several chapters, small books, PhD theses, ... book for real books slides for slides. The class uses big sans serif letters. You might want to consider using the Beamer class instead. \documentclass[options]{class} 10 Things You Need to Know Table 1.2: Document Class Options. 10pt, 11pt, 12pt Sets the size of the main font in the document. If no option is specified, 10pt is assumed. a4paper, letterpaper, ... Defines the paper size. The default size is letterpaper. Besides that, a5paper, b5paper, executivepaper, and legalpaper can be specified. fleqn Typesets displayed formulae left-aligned instead of centred. leqno Places the numbering of formulae on the left hand side instead of the right. titlepage, notitlepage Specifies whether a new page should be started after the document title or not. The article class does not start a new page by default, while report and book do. onecolumn, twocolumn Instructs LATEX to typeset the document in one column or two columns. twoside, oneside Specifies whether double or single sided output should be generated. The classes article and report are single sided and the book class is double sided by default. Note that this option concerns the style of the document only. The option twoside does not tell the printer you use that it should actually make a two-sided printout. landscape Changes the layout of the document to print in landscape mode. openright, openany Makes chapters begin either only on right hand pages or on the next page available. This does not work with the article class, as it does not know about chapters. The report class by default starts chapters on the next page available and the book class starts them on right hand pages. 1.7 Files You Might Encounter 11 1.6.2 Packages While writing your document, you will probably find that there are some areas where basic LATEX cannot solve your problem. If you want to include graphics, coloured text or source code from a file into your document, you need to enhance the capabilities of LATEX. Such enhancements are called packages. Packages are activated with the command, where package is the name of the package and options is a list of keywords that trigger special features in the package. The \usepackage command goes into the preamble of the document. See section 1.4 for details. Some packages come with the LATEX 2ε base distribution (See Table 1.3). Others are provided separately. You may find more information on the packages installed at your site in your Local Guide [5]. The prime source for information about LATEX packages is The LATEX Companion [3]. It contains descriptions on hundreds of packages, along with information of how to write your own extensions to LATEX2ε. Modern TEX distributions come with a large number of packages prein- stalled. If you are working on a Unix system, use the command texdoc for accessing package documentation. 1.6.3 Page Styles LATEX supports three predefined header/footer combinations—so-called page styles. The style parameter of the command defines which one to use. Table 1.4 lists the predefined page styles. It is possible to change the page style of the current page with the com- mand A description how to create your own headers and footers can be found in The LATEX Companion [3] and in section 4.3 on page 76. 1.7 Files You Might Encounter When you work with LATEX you will soon find yourself in a maze of files with various extensions and probably no clue. The following list explains the various file types you might encounter when working with TEX. Please \usepackage[options]{package} \pagestyle{style} \thispagestyle{style} 12 Things You Need to Know Table 1.3: Some of the Packages Distributed with LATEX. doc Allows the documentation of LATEX programs. Described in doc.dtxa and in The LATEX Companion [3]. exscale Provides scaled versions of the math extension font. Described in ltexscale.dtx. fontenc Specifies which font encoding LATEX should use. Described in ltoutenc.dtx. ifthen Provides commands of the form ‘if...then do...otherwise do....’ Described in ifthen.dtx and The LATEX Companion [3]. latexsym To access the LATEX symbol font, you should use the latexsym package. Described in latexsym.dtx and in The LATEX Companion [3]. makeidx Provides commands for producing indexes. Described in section 4.2 and in The LATEX Companion [3]. syntonly Processes a document without typesetting it. inputenc Allows the specification of an input encoding such as ASCII, ISO Latin-1, ISO Latin-2, 437/850 IBM code pages, Apple Mac- intosh, Next, ANSI-Windows or user-defined one. Described in inputenc.dtx. aThis file should be installed on your system, and you should be able to get a dvi file by typing latex doc.dtx in any directory where you have write permission. The same is true for all the other files mentioned in this table. Table 1.4: The Predefined Page Styles of LATEX. plain prints the page numbers on the bottom of the page, in the middle of the footer. This is the default page style. headings prints the current chapter heading and the page number in the header on each page, while the footer remains empty. (This is the style used in this document) empty sets both the header and the footer to be empty. 1.7 Files You Might Encounter 13 note that this table does not claim to be a complete list of extensions, but if you find one missing that you think is important, please drop me a line. .tex LATEX or TEX input file. Can be compiled with latex. .sty LATEX Macro package. Load this into your LATEX document using the \usepackage command. .dtx Documented TEX. This is the main distribution format for LATEX style files. If you process a .dtx file you get documented macro code of the LATEX package contained in the .dtx file. .ins The installer for the files contained in the matching .dtx file. If you download a LATEX package from the net, you will normally get a .dtx and a .ins file. Run LATEX on the .ins file to unpack the .dtx file. .cls Class files define what your document looks like. They are selected with the \documentclass command. .fd Font description file telling LATEX about new fonts. The following files are generated when you run LATEX on your input file: .dvi Device Independent File. This is the main result of a classical LATEX compile run. Look at its content with a DVI previewer program or send it to a printer with dvips or a similar application. If you are using pdfLATEX then you should not see any of these files. .log Gives a detailed account of what happened during the last compiler run. .toc Stores all your section headers. It gets read in for the next compiler run and is used to produce the table of contents. .lof This is like .toc but for the list of figures. .lot And again the same for the list of tables. .aux Another file that transports information from one compiler run to the next. Among other things, the .aux file is used to store information associated with cross-references. .idx If your document contains an index. LATEX stores all the words that go into the index in this file. Process this file with makeindex. Refer to section 4.2 on page 74 for more information on indexing. .ind The processed .idx file, ready for inclusion into your document on the next compile cycle. .ilg Logfile telling what makeindex did. 14 Things You Need to Know 1.8 Big Projects When working on big documents, you might want to split the input file into several parts. LATEX has two commands that help you to do that. Use this command in the document body to insert the contents of another file named filename.tex. Note that LATEX will start a new page before processing the material input from filename.tex. The second command can be used in the preamble. It allows you to instruct LATEX to only input some of the \included files. After this command is executed in the preamble of the document, only \include commands for the filenames that are listed in the argument of the \includeonly command will be executed. The \include command starts typesetting the included text on a new page. This is helpful when you use \includeonly, because the page breaks will not move, even when some include files are omitted. Sometimes this might not be desirable. In this case, use the command. It simply includes the file specified. No flashy suits, no strings attached. To make LATEX quickly check your document use the syntonly package. This makes LATEX skim through your document only checking for proper syntax and usage of the commands, but doesn’t produce any (pdf) output. As LATEX runs faster in this mode you may save yourself valuable time. Usage is very simple: \usepackage{syntonly} \syntaxonly When you want to produce pages, just comment out the second line (by adding a percent sign). \include{filename} \includeonly{filename,filename,...} \input{filename} Chapter 2 Typesetting Text After reading the previous chapter, you should know about the basic stuff of which a LATEX2ε document is made. In this chapter I will fill in the remaining structure you will need to know in order to produce real world material. 2.1 The Structure of Text and Language By Hanspeter Schmid < hanspi@schmid- werren.ch>
The main point of writing a text, is to convey ideas, information, or knowl- edge to the reader. The reader will understand the text better if these ideas are well-structured, and will see and feel this structure much better if the typographical form reflects the logical and semantic structure of the content.
LATEX is different from other typesetting systems in that you just have to tell it the logical and semantic structure of a text. It then derives the typographical form of the text according to the “rules” given in the document class file and in various style files.
The most important text unit in LATEX (and in typography) is the para- graph. We call it “text unit” because a paragraph is the typographical form that should reflect one coherent thought, or one idea. You will learn in the following sections how to force line breaks with e.g. \\, and paragraph breaks with e.g. leaving an empty line in the source code. Therefore, if a new thought begins, a new paragraph should begin, and if not, only line breaks should be used. If in doubt about paragraph breaks, think about your text as a conveyor of ideas and thoughts. If you have a paragraph break, but the old thought continues, it should be removed. If some totally new line of thought occurs in the same paragraph, then it should be broken.
Most people completely underestimate the importance of well-placed paragraph breaks. Many people do not even know what the meaning of a paragraph break is, or, especially in LATEX, introduce paragraph breaks without knowing it. The latter mistake is especially easy to make if equa- tions are used in the text. Look at the following examples, and figure out

16
Typesetting Text
why sometimes empty lines (paragraph breaks) are used before and after the equation, and sometimes not. (If you don’t yet understand all commands well enough to understand these examples, please read this and the following chapter, and then read this section again.)
% Example 1
\ldots when Einstein introduced his formula
\begin{equation}
e = m \cdot c^2 \; ,
\end{equation}
which is at the same time the most widely known
and the least well understood physical formula.
% Example 2
\ldots from which follows Kirchhoff’s current law:
\begin{equation}
\sum_{k=1}^{n} I_k = 0 \; .
\end{equation}
Kirchhoff’s voltage law can be derived \ldots
% Example 3
\ldots which has several advantages.
\begin{equation}
I_D = I_F – I_R
\end{equation}
is the core of a very different transistor model. \ldots
The next smaller text unit is a sentence. In English texts, there is a larger space after a period that ends a sentence than after one that ends an abbreviation. LATEX tries to figure out which one you wanted to have. If LATEX gets it wrong, you must tell it what you want. This is explained later in this chapter.
The structuring of text even extends to parts of sentences. Most lan- guages have very complicated punctuation rules, but in many languages (including German and English), you will get almost every comma right if you remember what it represents: a short stop in the flow of language. If you are not sure about where to put a comma, read the sentence aloud and take a short breath at every comma. If this feels awkward at some place, delete that comma; if you feel the urge to breathe (or make a short stop) at some other place, insert a comma.

2.2 Line Breaking and Page Breaking 17
Finally, the paragraphs of a text should also be structured logically at a higher level, by putting them into chapters, sections, subsections, and so on. However, the typographical effect of writing e.g. \section{The Structure of Text and Language} is so obvious that it is almost self-evident how these high-level structures should be used.
2.2 Line Breaking and Page Breaking 2.2.1 Justified Paragraphs
Books are often typeset with each line having the same length. LATEX inserts the necessary line breaks and spaces between words by optimizing the con- tents of a whole paragraph. If necessary, it also hyphenates words that would not fit comfortably on a line. How the paragraphs are typeset depends on the document class. Normally the first line of a paragraph is indented, and there is no additional space between two paragraphs. Refer to section 6.3.2 for more information.
In special cases it might be necessary to order LATEX to break a line:
starts a new line without starting a new paragraph.
additionally prohibits a page break after the forced line break.
starts a new page.
suggest places where a break may (or may not) happen. They enable the author to influence their actions with the optional argument n, which can be set to a number between zero and four. By setting n to a value below 4, you leave LATEX the option of ignoring your command if the result would look very bad. Do not confuse these “break” commands with the “new” commands. Even when you give a “break” command, LATEX still tries to even out the right border of the line and the total length of the page, as described in the next section; this can lead to unpleasant gaps in your text. If you really want to start a “new line” or a “new page”, then use the corresponding command. Guess their names!
\\ or \newline
\\*
\newpage
\linebreak[n], \nolinebreak[n], \pagebreak[n], \nopagebreak[n]

18
Typesetting Text
LATEX always tries to produce the best line breaks possible. If it cannot find a way to break the lines in a manner that meets its high standards, it lets one line stick out on the right of the paragraph. LATEX then complains (“overfull hbox”) while processing the input file. This happens most often when LATEX cannot find a suitable place to hyphenate a word.1 Instruct LATEX to lower its standards a little by giving the \sloppy command. It prevents such over-long lines by increasing the inter-word spacing—even if the final output is not optimal. In this case a warning (“underfull hbox”) is given to the user. In most such cases the result doesn’t look very good. The command \fussy brings LATEX back to its default behaviour.
2.2.2 Hyphenation
LATEX hyphenates words whenever necessary. If the hyphenation algorithm does not find the correct hyphenation points, remedy the situation by using the following commands to tell TEX about the exception.
The command
causes the words listed in the argument to be hyphenated only at the points marked by “-”. The argument of the command should only contain words built from normal letters, or rather signs that are considered to be normal letters by LATEX. The hyphenation hints are stored for the language that is active when the hyphenation command occurs. This means that if you place a hyphenation command into the preamble of your document it will influence the English language hyphenation. If you place the command after the \begin{document} and you are using some package for national language support like polyglossia, then the hyphenation hints will be active in the language activated through polyglossia.
The example below will allow “hyphenation” to be hyphenated as well as “Hyphenation”, and it prevents “FORTRAN”, “Fortran” and “fortran” from being hyphenated at all. No special characters or symbols are allowed in the argument.
Example:
\hyphenation{FORTRAN Hy-phen-a-tion}
The command \- inserts a discretionary hyphen into a word. This also becomes the only point hyphenation is allowed in this word. This command is especially useful for words containing special characters (e.g. accented
1Although LATEX gives you a warning when that happens (Overfull \hbox) and displays the offending line, such lines are not always easy to find. If you use the option draft in the \documentclass command, these lines will be marked with a thick black line on the right margin.
\hyphenation{word list}

2.3 Ready-Made Strings 19
characters), because LATEX does not automatically hyphenate words con- taining special characters.
I think this is: su\-per\-cal\-%
i\-frag\-i\-lis\-tic\-ex\-pi\-%
al\-i\-do\-cious
Several words can be kept together on one line with the command
It causes its argument to be kept together under all circumstances.
My phone number will change soon.
It will be \mbox{0116 291 2319}.
The parameter
\mbox{\emph{filename}} should
contain the name of the file.
\fbox is similar to \mbox, but in addition there will be a visible box drawn around the content.
2.3 Ready-Made Strings
In some of the examples on the previous pages, you have seen some very simple LATEX commands for typesetting special text strings:
Command
\today
\TeX
\LaTeX
\LaTeXe
Example March 26, 2018 TEX
LATEX
LA T E X 2 ε
Description
Current date
Your favorite typesetter The Name of the Game The current incarnation
I think this is: supercalifragilisticexpiali- docious
\mbox{text}
My phone number will change soon. It will be 0116 291 2319.
The parameter filename should contain the name of the file.
2.4 Special Characters and Symbols 2.4.1 Quotation Marks
You should not use the ” for quotation marks as you would on a typewriter. In publishing there are special opening and closing quotation marks. In LATEX, use two ‘ (grave accent) for opening quotation marks and two ’ (ver- tical quote) for closing quotation marks. For single quotes you use just one of each.
“Please press the `x’ key.”
“Please press the ‘x’ key.”

20
Typesetting Text
Yes I know the rendering is not ideal, it’s really a back-tick or grave accent (‘) for opening quotes and vertical quote (’) for closing, despite what the font chosen might suggest.
2.4.2 Dashes and Hyphens
LATEX knows four kinds of dashes. Access three of them with different num- ber of consecutive dashes. The fourth sign is actually not a dash at all—it is the mathematical minus sign:
daughter-in-law, X-rated pages 13–67
yes—or no?
0, 1 and −1
daughter-in-law, X-rated\\
pages 13–67\\
yes—or no? \\
$0$, $1$ and $-1$
The names for these dashes are: ‘-’ hyphen, ‘–’ en-dash, ‘—’ em-dash and ‘−’ minus sign.
2.4.3 Tilde (∼)
A character often seen in web addresses is the tilde. To generate this in LATEX use \~{} but the result ( ̃) is not really what you want. Try this instead:
http://www.rich.edu/\~{}bush \\
http://www.clever.edu/$\sim$demo
2.4.4 Slash (/)
In order to typeset a slash between two words, one can simply type e.g. read/write, but this makes LATEX treat the two words as one. Hyphen- ation is disabled for these two words, so there may be ‘overfull’ errors. To overcome this, use \slash. For example type ‘read\slash write’ which allows hyphenation. But normal ‘/’ character may be still used for ratios or units, e.g. 5 MB/s.
2.4.5 Degree Symbol (◦)
Printing the degree symbol in pure LATEX.
It’s $-30\,^{\circ}\mathrm{C}$.
I will soon start to
super-conduct.
http://www.rich.edu/ ̃bush http://www.clever.edu/∼demo
It’s −30◦C. I will soon start to super- conduct.

2.4 Special Characters and Symbols 21
The textcomp package makes the degree symbol also available as \textdegree or in combination with the C by using the \textcelsius.
30 \textcelsius{} is
86 \textdegree{}F.
2.4.6 The Euro Currency Symbol (e)
When writing about money these days, you need the Euro symbol. Many current fonts contain a Euro symbol. After loading the textcomp package in the preamble of your document
use the command
to access it.
If your font does not provide its own Euro symbol or if you do not like the font’s Euro symbol, you have two more choices:
First the eurosym package. It provides the official Euro symbol:
If you prefer a Euro symbol that matches your font, use the option gen in place of the official option.
Table 2.1: A bag full of Euro symbols
LM+textcomp \texteuro € € € eurosym \euro e e e [gen]eurosym \euro AC AC AC
2.4.7 Ellipsis (…)
On a typewriter, a comma or a period takes the same amount of space as any other letter. In book printing, these characters occupy only a little space and are set very close to the preceding letter. Therefore, entering ‘ellipsis’
30 °C is 86 °F.
\usepackage{textcomp}
\texteuro
\usepackage[official ]{eurosym}

22 Typesetting Text
by just typing three dots would produce the wrong result. Instead, there is a special command for these dots. It is called
Not like this … but like this:\\
New York, Tokyo, Budapest, \ldots
2.4.8 Ligatures
Some letter combinations are typeset not just by setting the different letters one after the other, but by actually using special symbols.
fffiflffi… insteadof fffiflffi…
These so-called ligatures can be prohibited by inserting an \mbox{} between the two letters in question. This might be necessary with words built from two words.
\Large Not shelfful\\
but shelf\mbox{}ful
2.4.9 Accents and Special Characters
LATEX supports the use of accents and special characters from many lan- guages. Table 2.2 shows all sorts of accents being applied to the letter o. Naturally other letters work too.
To place an accent on top of an i or a j, its dots have to be removed. This is accomplished by typing \i and \j.
H\^otel, na\”\i ve, \’el\`eve,\\
sm\o rrebr\o d, !`Se\~norita!,\\
Sch\”onbrunner Schlo\ss{}
Stra\ss e
2.5 International Language Support
By Axel Kielhorn < A.Kielhorn@web.de>
When you write documents in languages other than English, there are three areas where LATEX has to be configured appropriately:
\ldots (low dots)
Not like this … but like this: New York, Tokyo, Budapest, …
Not shelfful but shelfful
Hôtel, naïve, élève, smørrebrød, ¡Señorita!, Schönbrunner Schloß Straße

2.5 International Language Support 23
1. All automatically generated text strings2 have to be adapted to the new language.
2. LATEX needs to know the hyphenation rules for the current language.
3. Language specific typographic rules. In French for example, there is a mandatory space before each colon character (:).
Also entering text in your language of choice might be a bit cumbersome using all the commands from figure 2.2. To overcome this problem, until recently you had to delve deep into the abyss of language specific encodings both for input as well as fonts. These days, with modern TEX engines speaking UTF-8 natively, these problems have relaxed considerably.
The package polyglossia[18] is a replacement for venerable babel package. It takes care of the hyphenation patterns and automatically generated text strings in your documents.
The package fontspec[20] handles font loading for XƎLATEX and LuaTEX. The default font is Latin Modern Roman.
2.5.1 Polyglossia Usage
Depending on the TEX engine you use slighly different commands are nec- essary in the preamble of your document to properly enable multilingual processing. Figure 2.1 on page 24 shows a sample preamble that takes care of all the necessary settings.
So far there has been no advantage to using a Unicode TEX engine. This changes when we leave the Latin script and move to a more interesting language like Greek or Russian. With a Unicode based system, you can
2Table of Contents, List of Figures, …
Table 2.2: Accents and Special Characters.
ò \`o ó ō \=o ȯ
ŏ \uo ǒ ọ \do o̲
œ \oe Œ å \aa Å
\’o ô \^o õ \~o
ø \o Ø \O ı \i ȷ \j
\.o ö \vo ő
\bo o͡o
\”o ç\cc \Ho o̧\co
\OE \AA
æ
ł ¡
\t oo \ae
\l !`
Æ \AE Ł \L
¿ ?`

24
Typesetting Text
simply3 enter the native characters in your editor and TEX will understand them.
Writing in different languages is easy, just specify the languages in the preamble. This example uses the csquotes package which generates the right kind of quotes according to the language you are writing in. Note that it needs to be loaded before loading the language support.
To write a paragraph in German, you can use the German environment:
\usepackage[autostyle=true]{csquotes}
\setdefaultlanguage{english}
\setotherlanguage{german}
English text.
\begin{german}
Deutscher \enquote{Text}.
\end{german}
More English \enquote{text}.
If you just need a word in a foreign language you can use the \textlanguage command:
Did you know that
\textgerman{Gesundheit} is
actually a German word.
This may look unnecessary since the only advantage is a correct hy- phenation, but when the second language is a little bit more exotic it will be worth the effort.
Sometimes the font used in the main document does not contain glyphs that are required in the second language. Latin Modern for example does
3For small values of simple.
\usepackage{iftex}
\ifXeTeX
\usepackage{fontspec}
\else
\usepackage{luatextra}
\fi
\defaultfontfeatures{Ligatures=TeX}
\usepackage{polyglossia}
Figure 2.1: All in one preamble that takes care of LuaLATEX and XƎLATEX
English text. Deutscher „Text“. More En- glish “text”.
Did you know that Gesundheit is actually a German word.

2.5 International Language Support 25
not contain Cyrillic letters. The solution is to define a font that will be used for that language. Whenever a new language is activated, polyglossia will first check whether a font has been defined for that language. If you are happy with the computer modern font, you may want to try the “Computer Modern Unicode” font by adding the following commands to the preamble of your document.
For LuaLATEX it is pretty simple
\setmainfont{CMU Serif}
\setsansfont{CMU Sans Serif}
\setmonofont{CMU Typewriter Text}
For XƎLATEX you have to be a bit more explicit:
\setmainfont{cmun}[
Extension=.otf,UprightFont=*rm,ItalicFont=*ti,
BoldFont=*bx,BoldItalicFont=*bi,
]
\setsansfont{cmun}[
Extension=.otf,UprightFont=*ss,ItalicFont=*si,
BoldFont=*sx,BoldItalicFont=*so,
]
\setmonofont{cmun}[
Extension=.otf,UprightFont=*btl,ItalicFont=*bto,
BoldFont=*tb,BoldItalicFont=*tx,
]
\textrussian{Правда} is
a russian newspaper.
\textgreek{ἀλήθεια} is truth
or disclosure in philosophy
The package xgreek[21] offers support for writing either ancient or mod- ern (monotonic or polytonic) greek.
Right to Left (RTL) languages.
Some languages are written left to right, others are written right to left(RTL). polyglossia needs the bidi[22] package4 in order to support RTL languages. The bidi package should be the last package you load, even after hyperref which is usually the last package. (Since polyglossia loads bidi this means that polyglossia should be the last package loaded.)
4bidi does not support LuaTEX.
With the appropriate fonts loaded, you can now write:
Правда is a russian newspaper. ἀλήθεια is truth or disclosure in philosophy

26
Typesetting Text
The package xepersian[23] offers support for the Persian language. It supplies Persian LATEX-commands that allows you to enter commands like \section in Persian, which makes this really attractive to native speakers. xepersian is the only package that supports kashida with XƎLATEX. A package for Syriac which uses a similar algorithm is under development.
The IranNastaliq font provided by the SCICT5 is available at their web- site http://www.scict.ir/Portal/Home/Default.aspx.
The arabxetex[19] package supports several languages with an Arabic script:
• arab (Arabic) • persian
• urdu
• sindhi
• pashto
• ottoman (turk) • kurdish
• kashmiri
• malay (jawi)
• uighur
It offers a font mapping that enables XƎLATEX to process input using the ArabTEX ASCII transcription.
Fonts that support several Arabic laguages are offered by the IRMUG6 at http://wiki.irmug.org/index.php/X_Series_2.
There is no package available for Hebrew because none is needed. The Hebrew support in polyglossia should be sufficient. But you do need a suitable font with real Unicode Hebrew. SBL Hebrew is free for non- commercial use and available at http://www.sbl-site.org/educational/ biblicalfonts.aspx. Another font available under the Open Font License is Ezra SIL, available at http://www.sil.org/computing/catalog/show_ software.asp?id=76.
Remember to select the correct script:
5Supreme Council of Information and Communication Technology 6Iranian Mac User Group
\newfontfamily\hebrewfont[Script=Hebrew]{SBL Hebrew}
\newfontfamily\hebrewfont[Script=Hebrew]{Ezra SIL}

2.6 The Space Between Words 27 Chinese, Japanese and Korean (CJK)
The package xeCJK[24] takes care of font selection and punctuation for these languages.
2.6 The Space Between Words
To get a straight right margin in the output, LATEX inserts varying amounts of space between the words. It inserts slightly more space at the end of a sentence, as this makes the text more readable. LATEX assumes that sen- tences end with periods, question marks or exclamation marks. If a period follows an uppercase letter, this is not taken as a sentence ending, since periods after uppercase letters normally occur in abbreviations.
Any exception from these assumptions has to be specified by the author. A backslash in front of a space generates a space that will not be enlarged. A tilde ‘~’ character generates a space that cannot be enlarged and additionally prohibits a line break. The command \@ in front of a period specifies that this period terminates a sentence even when it follows an uppercase letter.
Mr.~Smith was happy to see her\\
cf.~Fig.~5\\
I like BASIC\@. What about you?
The additional space after periods can be disabled with the command
which tells LATEX not to insert more space after a period than after an or- dinary character. This is very common in non-English languages, except bibliographies. If you use \frenchspacing, the command \@ is not neces- sary.
2.7 Titles, Chapters, and Sections
To help the reader find his or her way through your work, you should divide it into chapters, sections, and subsections. LATEX supports this with special commands that take the section title as their argument. It is up to you to use them in the correct order.
Mr. Smith was happy to see her cf. Fig. 5
I like BASIC. What about you?
\frenchspacing

28
Typesetting Text
The following sectioning commands are available for the article class:
If you want to split your document into parts without influencing the section or chapter numbering use
When you work with the report or book class, an additional top-level sectioning command becomes available
As the article class does not know about chapters, it is quite easy to add articles as chapters to a book. The spacing between sections, the numbering and the font size of the titles will be set automatically by LATEX.
Two of the sectioning commands are a bit special:
• The \part command does not influence the numbering sequence of chapters.
• The \appendix command does not take an argument. It just changes the chapter numbering to letters.7
LATEX creates a table of contents by taking the section headings and page numbers from the last compile cycle of the document. The command
expands to a table of contents at the place it is issued. A new document has to be compiled (“LATEXed”) twice to get a correct table of contents. Sometimes it might be necessary to compile the document a third time. LATEX will tell you when this is necessary.
All sectioning commands listed above also exist as “starred” versions. A “starred” version of a command is built by adding a star * after the command name. This generates section headings that do not show up in the table of contents and are not numbered. The command \section{Help}, for example, would become \section*{Help}.
7For the article style it changes the section numbering.
\section{…}
\subsection{…}
\subsubsection{…}
\paragraph{…}
\subparagraph{…}
\part{…}
\chapter{…}
\tableofcontents

2.7 Titles, Chapters, and Sections 29
Normally the section headings show up in the table of contents exactly as they are entered in the text. Sometimes this is not possible, because the heading is too long to fit into the table of contents. The entry for the table of contents can then be specified as an optional argument in front of the actual heading.
\chapter[Title for the table of contents]{A long
and especially boring title, shown in the text}
The title of the whole document is generated by issuing a
command. The contents of the title have to be defined by the commands
before calling \maketitle. In the argument to \author, you can supply several names separated by \and commands.
An example of some of the commands mentioned above can be found in Figure 1.2 on page 8.
Apart from the sectioning commands explained above, LATEX2ε intro- duced three additional commands for use with the book class. They are useful for dividing your publication. The commands alter chapter headings and page numbering to work as you would expect in a book:
\frontmatter should be the very first command after the start of the doc- ument body (\begin{document}). It will switch page numbering to Roman numerals and sections will be non-enumerated as if you were using the starred sectioning commands (eg \chapter*{Preface}) but the sections will still show up in the table of contents.
\mainmatter comes right before the first chapter of the book. It turns on Arabic page numbering and restarts the page counter.
\appendix marks the start of additional material in your book. After this command chapters will be numbered with letters.
\backmatter should be inserted before the very last items in your book, such as the bibliography and the index. In the standard document classes, this has no visual effect.
\maketitle
\title{…}, \author{…} and optionally \date{…}

30 Typesetting Text 2.8 Cross References
In books, reports and articles, there are often cross-references to figures, tables and special segments of text. LATEX provides the following commands for cross referencing
where marker is an identifier chosen by the user. LATEX replaces \ref by the number of the section, subsection, figure, table, or theorem after which the corresponding \label command was issued. \pageref prints the page number of the page where the \label command occurred.8 As with section titles and page numbers for the table of contents, the numbers from the previous compile cycle are used.
A reference to this subsection
\label{sec:this} looks like:
“see section~\ref{sec:this} on
page~\pageref{sec:this}.”
2.9 Footnotes
With the command
a footnote is printed at the foot of the current page. Footnotes should always be put9 after the word or sentence they refer to. Footnotes referring to a sentence or part of it should therefore be put after the comma or period.10
Footnotes\footnote{This is
a footnote.} are often used
by people using \LaTeX.
8Note that these commands are not aware of what they refer to. \label just saves the last automatically generated number.
9“put” is one of the most common English words.
10Note that footnotes distract the reader from the main body of your document. After all,
everybody reads the footnotes—we are a curious species, so why not just integrate everything you want to say into the body of the document?11
11A guidepost doesn’t necessarily go where it’s pointing to :-).
\label{marker}, \ref{marker} and \pageref{marker}
\footnote{footnote text}
A reference to this subsection looks like: “see section 2.8 on page 30.”
Footnotesa are often used by people using LATEX.
aThis is a footnote.

2.10 Emphasized Words 31 2.10 Emphasized Words
If a text is typed using a typewriter, important words are emphasized by underlining them.
In printed books, however, words are emphasized by typesetting them in an italic font. As an author you shouldn’t care either way. The important bit is, to tell LATEX that a particular bit of text is important and should be emphasized. Hence the command
to emphasize text. What the command actually does with its argument depends on the context:
\emph{If you use
emphasizing inside a piece
of emphasized text, then
\LaTeX{} uses the
\emph{normal} font for
emphasizing.}
If you want control over font and font size, section 6.2 on page 107 might provide some inspiration.
2.11 Environments
Where environment is the name of the environment. Environments can be nested within each other as long as the correct nesting order is maintained.
\begin{aaa}…\begin{bbb}…\end{bbb}…\end{aaa}
In the following sections all important environments are explained.
2.11.1 Itemize, Enumerate, and Description
The itemize environment is suitable for simple lists, the enumerate en- vironment for enumerated lists, and the description environment for de- scriptions.
\underline{text}
\emph{text}
If you use emphasizing inside a piece of emphasized text, then LATEX uses the nor- mal font for emphasizing.
\begin{environment} text \end{environment}

32 Typesetting Text
\flushleft
\begin{enumerate}
\item You can nest the list
environments to your taste:
\begin{itemize}
\item But it might start to
look silly.
\item[-] With a dash.
\end{itemize}
\item Therefore remember:
\begin{description}
\item[Stupid] things will not
become smart because they are
in a list.
\item[Smart] things, though,
can be presented beautifully
in a list.
\end{description}
\end{enumerate}
2.11.2 Flushleft, Flushright, and Center
The environments flushleft and flushright generate paragraphs that are either left- or right-aligned. The center environment generates centred text. If you do not issue \\ to specify line breaks, LATEX will automatically determine line breaks.
\begin{flushleft}
This text is\\ left-aligned.
\LaTeX{} is not trying to make
each line the same length.
\end{flushleft}
\begin{flushright}
This text is right-\\aligned.
\LaTeX{} is not trying to make
each line the same length.
\end{flushright}
\begin{center}
At the centre\\of the earth
\end{center}
1. You can nest the list environments to your taste:
• But it might start to look silly.
– With a dash.
2. Therefore remember:
Stupid things will not become smart because they are in a list.
Smart things, though, can be presented beautifully in a list.
This text is
left-aligned. LATEX is not trying to make each line the same length.
This text is right- aligned. LATEX is not trying to make each line the same length.
At the centre of the earth

2.11 Environments 33 2.11.3 Quote, Quotation, and Verse
The quote environment is useful for quotes, important phrases and exam- ples.
A typographical rule of thumb
for the line length is:
\begin{quote}
On average, no line should
be longer than 66 characters.
\end{quote}
This is why \LaTeX{} pages have
such large borders by default
and also why multicolumn print
is used in newspapers.
There are two similar environments: the quotation and the verse en- vironments. The quotation environment is useful for longer quotes going over several paragraphs, because it indents the first line of each paragraph. The verse environment is useful for poems where the line breaks are im- portant. The lines are separated by issuing a \\ at the end of a line and an empty line after each verse.
I know only one English poem by
heart. It is about Humpty Dumpty.
\begin{flushleft}
\begin{verse}
Humpty Dumpty sat on a wall:\\
Humpty Dumpty had a great fall.\\
All the King’s horses and all
the King’s men\\
Couldn’t put Humpty together
again.
\end{verse}
\end{flushleft}
2.11.4 Abstract
In scientific publications it is customary to start with an abstract which gives the reader a quick overview of what to expect. LATEX provides the abstract environment for this purpose. Normally abstract is used in documents typeset with the article document class.
\begin{abstract}
The abstract abstract.
\end{abstract}
A typographical rule of thumb for the line length is:
On average, no line should be longer than 66 characters.
This is why LATEX pages have such large borders by default and also why multicol- umn print is used in newspapers.
I know only one English poem by heart. It is about Humpty Dumpty.
Humpty Dumpty sat on a wall:
Humpty Dumpty had a great fall.
All the King’s horses and all the King’s men
Couldn’t put Humpty together again.
The abstract abstract.

34 Typesetting Text 2.11.5 Printing Verbatim
Text that is enclosed between \begin{verbatim} and \end{verbatim} will be directly printed, as if typed on a typewriter, with all line breaks and spaces, without any LATEX command being executed.
Within a paragraph, similar behavior can be accessed with
The + is just an example of a delimiter character. Use any character except letters, * or space. Many LATEX examples in this booklet are typeset with this command.
The \verb|\ldots| command \ldots
\begin{verbatim}
10 PRINT “HELLO WORLD “;
20 GOTO 10
\end{verbatim}
\begin{verbatim*}
the starred version of
the verbatim
environment emphasizes
the spaces in the text
\end{verbatim*}
The \verb command can be used in a similar fashion with a star: \verb*|like this 🙂 |
The verbatim environment and the \verb command may not be used within parameters of other commands.
2.11.6 Tabular
The tabular environment can be used to typeset beautiful tables with optional horizontal and vertical lines. LATEX determines the width of the columns automatically.
The table spec argument of the
command defines the format of the table. Use an for a column of left- aligned text, for right-aligned text, and for centred text;
\verb+text+
The \ldots command …
10 PRINT “HELLO WORLD “;
20 GOTO 10
the␣starred␣version␣of
the␣␣␣␣␣␣verbatim
environment␣emphasizes
the␣spaces␣␣␣in␣the␣text
like␣␣␣this␣:-)␣
\begin{tabular}[pos]{table spec}
l
r
c
p{width}

2.11 Environments 35
for a column containing justified text with line breaks, and for a vertical line.
If the text in a column is too wide for the page, LATEX won’t automatically wrap it. Using you can define a special type of column which will wrap-around the text as in a normal paragraph.
The pos argument specifies the vertical position of the table relative to the baseline of the surrounding text. Use one of the letters , and
to specify table alignment at the top, bottom or centre.
Within a tabular environment, & jumps to the next column, \\ starts a new line and \hline inserts a horizontal line. Add partial lines by using \cline{i-j}, where i and j are the column numbers the line should extend over.
\begin{tabular}{|r|l|}
\hline
7C0 & hexadecimal \\
3700 & octal \\ \cline{2-2}
11111000000 & binary \\
\hline \hline
1984 & decimal \\
\hline
\end{tabular}
\begin{tabular}{|p{4.7cm}|}
\hline
Welcome to Boxy’s paragraph.
We sincerely hope you’ll
all enjoy the show.\\
\hline
\end{tabular}
The column separator can be specified with the
command kills the inter-column space and replaces it with whatever is be- tween the curly braces. One common use for this command is explained below in the decimal alignment problem. Another possible application is to suppress leading space in a table with .
\begin{tabular}{@{} l @{}}
\hline
no leading space\\
\hline
\end{tabular}
p{width}
|
t
b
construct. This
c
7C0 3700 11111000000
hexadecimal octal
binary
1984
decimal
Welcome to Boxy’s paragraph. We sincerely hope you’ll all en- joy the show.
@{…}
@{}
no leading space

36 Typesetting Text
\begin{tabular}{l}
\hline
leading space left and right\\
\hline
\end{tabular}
Since there is no built-in way to align numeric columns to a decimal point,12 we can “cheat” and do it by using two columns: a right-aligned inte- ger and a left-aligned fraction. The @{.} command in the \begin{tabular} line replaces the normal inter-column spacing with just a “.”, giving the ap- pearance of a single, decimal-point-justified column. Don’t forget to replace the decimal point in your numbers with a column separator (&)! A column label can be placed above our numeric “column” by using the \multicolumn command.
\begin{tabular}{c r @{.} l}
Pi expression &
\multicolumn{2}{c}{Value} \\
\hline
$\pi$ & 3&1416 \\
$\pi^{\pi}$ & 36&46 \\
$(\pi^{\pi})^{\pi}$ & 80662&7 \\
\end{tabular}
\begin{tabular}{|c|c|}
\hline
\multicolumn{2}{|c|}{Ene} \\
\hline
Mene & Muh! \\
\hline
\end{tabular}
Material typeset with the tabular environment always stays together on one page. If you want to typeset long tables, you might want to use the longtable environments.
Sometimes the default LATEX tables do feel a bit cramped. So you may want to give them a bit more breathing space by setting a higher \arraystretch and \tabcolsep value.
12If the ‘tools’ bundle is installed on your system, have a look at the dcolumn package.
leading space left and right
Pi expression
π ππ
(ππ )π
Value 3.1416
36.46 80662.7
Ene
Mene
Muh!

2.12 Including Graphics and Images 37
\begin{tabular}{|l|}
\hline
These lines\\\hline
are tight\\\hline
\end{tabular}
{\renewcommand{\arraystretch}{1.5}
\renewcommand{\tabcolsep}{0.2cm}
\begin{tabular}{|l|}
\hline
less cramped\\\hline
table layout\\\hline
\end{tabular}}
If you just want to grow the height of a single row in your table add an invisible vertical bar13. Use a zero width \rule to implement this trick.
\begin{tabular}{|c|}
\hline
\rule{1pt}{4ex}Pitprop \ldots\\
\hline
\rule{0pt}{4ex}Strut\\
\hline
\end{tabular}
The pt and ex in the example above are TEX units. Read more on units in table 6.5 on page 114.
A number of extra commands, enhancing the tabular environment are available in the booktabs package. It makes the creation of professional looking tables with proper spacing quite a bit simpler.
2.12 Including Graphics and Images
As explained in the previous section LATEX provides the facilities to work with floating bodies, such as images or graphics, with the figure and table environments.
A good set of commands for inclusion of graphics into these floating boddies is provided in the graphicx package by D. P. Carlisle. It is part of a whole family of packages called the “graphics” bundle.14
Use the following step by step guide to include a picture into your doc- ument:
1. Export the picture from your graphics program in EPS, PDF, PNG or JPEG format.
13In professional typesetting, this is called a strut. 14 CTAN://pkg/graphics
These lines
are tight
less cramped
table layout
Pitprop …
Strut

38
Typesetting Text
Table 2.3: Key Names for graphicx Package.
width
height
angle
scale
scale graphic to the specified width scale graphic to the specified height rotate graphic counterclockwise scale graphic
\includegraphics[angle=90,width=\textwidth]{test.png} Figure 2.2: Example code for including test.png into a document.
2. If you exported your graphics as an EPS vector graphics, you have to convert it to PDF format prior to using it. There is a epstopdf command line tool that helps with this task. Note that it may be sensible to export EPS eventhough your software can export PDF too, as PDFs often are full page and will thus get very small when imported into a document. EPS on the other hand come with a bounding box showing the extent of the actual graphics.
3. Load the graphicx package in the preamble of the input file with
4. Use the command
to include file into your document. The optional parameter accepts a comma separated list of keys and associated values. The keys can be used to alter the width, height and rotation of the included graphic. Table 2.3 lists the most important keys.
The example code in figure 2.2 on page 38 may help to clarify things. It includes the graphic stored in the file test.png. The graphic is first rotated by an angle of 90 degrees and then scaled to the final width of 0.5 times the width of a standard paragraph. The aspect ratio is 1.0, because no special height is specified. The width and height parameters can also be specified in absolute dimensions. Refer to Table 6.5 on page 114 for more information. If you want to know more about this topic, make sure to read [9].
\usepackage{graphicx}
\includegraphics[key=value, …]{file-name}

2.13 Floating Bodies 39 2.13 Floating Bodies
Today most publications contain a lot of figures and tables. These elements need special treatment, because they cannot be broken across pages. One method would be to start a new page every time a figure or a table is too large to fit on the present page. This approach would leave pages partially empty, which looks very bad.
The solution to this problem is to ‘float’ any figure or table that does not fit on the current page to a later page, while filling the current page with body text. LATEX offers two environments for floating bodies; one for tables and one for figures. To take full advantage of these two environments it is important to understand approximately how LATEX handles floats internally. Otherwise floats may become a major source of frustration, because LATEX never puts them where you want them to be.
Let’s first have a look at the commands LATEX supplies for floats:
Any material enclosed in a figure or table environment will be treated as floating matter. Both float environments support an optional parameter
called the placement specifier. This parameter is used to tell LATEX about the locations to which the float is allowed to be moved. A placement specifier is constructed by building a string of float-placing permissions. See Table 2.4.
For example, a table could be started with the following line
\begin{table}[!hbp]
The placement specifier [!hbp] allows LATEX to place the table right here
(h) or at the bottom (b) of some page or on a special floats page (p), and Table 2.4: Float Placing Permissions.
Spec Permission to place the float …
h here at the very place in the text where it oc- curred. This is useful mainly for small floats.
t atthetopofapage
b at the bottom of a page
p on a special page containing only floats.
! without considering most of the internal param-
etersa, which could otherwise stop this float from being placed.
aSuch as the maximum number of floats allowed on one page.
\begin{figure}[placement specifier] or \begin{table}[…]

40
Typesetting Text
all this even if it does not look that good (!). If no placement specifier is given, the standard classes assume [tbp].
LATEX will place every float it encounters according to the placement specifier supplied by the author. If a float cannot be placed on the current page it is deferred either to the figures queue or the tables queue.15 When a new page is started, LATEX first checks if it is possible to fill a special ‘float’ page with floats from the queues. If this is not possible, the first float on each queue is treated as if it had just occurred in the text: LATEX tries again to place it according to its respective placement specifiers (except ‘h,’ which is no longer possible). Any new floats occurring in the text get placed into the appropriate queues. LATEX strictly maintains the original order of appearance for each type of float. That’s why a figure that cannot be placed pushes all further figures to the end of the document. Therefore:
If LATEX is not placing the floats as you expected, it is often only one float jamming one of the two float queues.
While it is possible to give LATEX single-location placement specifiers, this causes problems. If the float does not fit in the location specified it becomes stuck, blocking subsequent floats. In particular, you should never, ever use the [h] option—it is so bad that in more recent versions of LATEX, it is automatically replaced by [ht].
Having explained the difficult bit, there are some more things to mention about the table and figure environments. Use the
command to define a caption for the float. A running number and the string “Figure” or “Table” will be added by LATEX.
The two commands
operate analogously to the \tableofcontents command, printing a list of figures or tables, respectively. These lists will display the whole caption, so if you tend to use long captions you must have a shorter version of the caption for the lists. This is accomplished by entering the short version in brackets after the \caption command.
\caption[Short]{LLLLLoooooonnnnnggggg}
15These are FIFO—‘first in first out’—queues!
\caption{caption text}
\listoffigures and \listoftables

2.13 Floating Bodies 41
Use \label and \ref to create a reference to a float within your text. Note that the \label command must come after the \caption command since you want it to reference the number of the caption.
The following example draws a square and inserts it into the document. You could use this if you wanted to reserve space for images you are going to paste into the finished document.
Figure~\ref{white} is an example of Pop-Art.
\begin{figure}[!hbtp]
\includegraphics[angle=90,width=\textwidth]{white-box.pdf}
\caption{White Box by Peter Markus Paulian.\label{white}}
\end{figure}
In the example above, LATEX will try really hard (!) to place the figure right here (h).16 If this is not possible, it tries to place the figure at the bottom (b) of the page. Failing to place the figure on the current page, it determines whether it is possible to create a float page containing this figure and maybe some tables from the tables queue. If there is not enough material for a special float page, LATEX starts a new page, and once more treats the figure as if it had just occurred in the text.
Under certain circumstances it might be necessary to use the
command. It orders LATEX to immediately place all floats remaining in the queues and then start a new page. \cleardoublepage even goes to a new right-hand page.
\clearpage or even the \cleardoublepage
16assuming the figure queue is empty.

Chapter 3
Typesetting Mathematical Formulae
Now you are ready! In this chapter, we will attack the main strength of TEX: mathematical typesetting. But be warned, this chapter only scratches the sur- face. While the things explained here are sufficient for many people, don’t despair if you can’t find a solution to your mathematical typesetting needs here. It is highly likely that your problem is addressed in AMS-LATEX.
3.1 The AMS-LATEX bundle
If you want to typeset (advanced) mathematics, you should use AMS-LATEX. The AMS-LATEX bundle is a collection of packages and classes for mathe- matical typesetting. We will mostly deal with the amsmath package which is a part of the bundle. AMS-LATEX is produced by The American Mathemat- ical Society and it is used extensively for mathematical typesetting. LATEX itself does provide some basic features and environments for mathematics, but they are limited (or maybe it’s the other way around: AMS-LATEX is unlimited!) and in some cases inconsistent.
AMS-LATEX is a part of the required distribution and is provided with all recent LATEX distributions.1 In this chapter, we assume amsmath is loaded in the preamble; \usepackage{amsmath}.
3.2 Single Equations
A mathematical formula can be typeset in-line within a paragraph (text style), or the paragraph can be broken and the formula typeset separately (display style). Mathematical equations within a paragraph are entered be- tween $ and $:
1If yours is missing it, go to CTAN://pkg/amslatex.

44 Typesetting Mathematical Formulae
Add $a$ squared and $b$ squared
to get $c$ squared. Or, using
a more mathematical approach:
$a^2 + b^2 = c^2$
\TeX{} is pronounced as
$\tau\epsilon\chi$\\[5pt]
100~m$^{3}$ of water\\[5pt]
This comes from my $\heartsuit$
If you want your larger equations to be set apart from the rest of the paragraph, it is preferable to display them rather than to break the para- graph apart. To do this, you enclose them between \begin{equation} and \end{equation}.2 You can then \label an equation number and refer to it somewhere else in the text by using the \eqref command. If you want to name the equation something specific, you \tag it instead.
Add $a$ squared and $b$ squared
to get $c$ squared. Or, using
a more mathematical approach
\begin{equation}
a^2 + b^2 = c^2
\end{equation}
Einstein says
\begin{equation}
E = mc^2 \label{clever}
\end{equation}
He didn’t say
\begin{equation}
1 + 1 = 3 \tag{dumb}
\end{equation}
This is a reference to
\eqref{clever}.
If you don’t want LATEX to number the equations, use the starred ver- sion of equation using an asterisk, equation*, or even easier, enclose the equation in \[ and \]:3
2This is an amsmath command. If you don’t have access to the package for some obscure reason, you can use LATEX’s own displaymath environment instead.
3 This is again from amsmath. Standard LATEX’s has only the equation environment without the star.
Add a squared and b squared to get c squared. Or, using a more mathematical approach: a2 + b2 = c2
TEX is pronounced as τεχ 100 m3 of water
This comes from my ♡
Add a squared and b squared to get c squared. Or, using a more mathematical approach
Einstein says
He didn’t say
a2 + b2 = c2 (3.1) E = mc2 (3.2)
1+1=3 (dumb) This is a reference to (3.2).

3.2 Single Equations 45
Add $a$ squared and $b$ squared
to get $c$ squared. Or, using
a more mathematical approach
\begin{equation*}
a^2 + b^2 = c^2
\end{equation*}
or you can type less for the
same effect:
\[ a^2 + b^2 = c^2 \]
While \[ is short and sweet, it does not allow switching between num- bered and not numbered style as easily as equation and equation*.
Note the difference in typesetting style between text style and display style equations:
This is text style:
$\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}$.
And this is display style:
\begin{equation}
\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}
\end{equation}
In text style, enclose tall or deep math expressions or sub expressions in \smash. This makes LATEX ignore the height of these expressions. This keeps the line spacing even.
A $d_{e_{e_p}}$ mathematical
expression followed by a
$h^{i^{g^h}}$ expression. As
opposed to a smashed
\smash{$d_{e_{e_p}}$} expression
followed by a
\smash{$h^{i^{g^h}}$} expression.
3.2.1 Math Mode
There are also differences between math mode and text mode. For example, in math mode:
1. Most spaces and line breaks do not have any significance, as all spaces are either derived logically from the mathematical expressions, or have to be specified with special commands such as \,, \quad or \qquad (we’ll get back to that later, see section 3.7).
Add a squared and b squared to get c squared. Or, using a more mathematical approach
a2 + b2 = c2
or you can type less for the same effect:
a2 + b2 = c2
Thisistextstyle:lim ∑n 1 =π2. n→∞ k=1 k2 6
And this is display style:
∑n 1 π2
lim 2= (3.3) n→∞ k 6
k=1
A deep mathematical expression followed
by a high expression. As opposed to a smashed deep expression followed by a high expression.

46 Typesetting Mathematical Formulae
2. Empty lines are not allowed. Only one paragraph per formula.
3. Each letter is considered to be the name of a variable and will be typeset as such. If you want to typeset normal text within a formula (normal upright font and normal spacing) then you have to enter the text using the \text{…} command (see also section 3.8 on page 60).
$\forall x \in \mathbf{R}:
\qquad x^{2} \geq 0$
$x^{2} \geq 0\qquad
\text{for all }x\in\mathbf{R}$
Mathematicians can be very fussy about which symbols are used: it would be conventional here to use the ‘blackboard bold’ font, which is ob- tained using \mathbb from the package amssymb.4 The last example be- comes
$x^{2} \geq 0\qquad
\text{for all } x
\in \mathbb{R}$
See Table 3.14 on page 69 and Table 6.4 on page 109 for more math fonts.
3.3 Building Blocks of a Mathematical Formula
In this section, we describe the most important commands used in mathe- matical typesetting. Most of the commands in this section will not require amsmath (if they do, it will be stated clearly), but load it anyway.
Lowercase Greek letters are entered as \alpha, \beta, \gamma, …, uppercase letters are entered as \Gamma, \Delta, …5
Take a look at Table 3.2 on page 65 for a list of Greek letters. $\lambda,\xi,\pi,\theta,
\mu,\Phi,\Omega,\Delta$
Exponents, Superscripts and Subscripts can be specified using the ^ and the _ characters. Most math mode commands act only on the next
4amssymb is not a part of the AMS-LATEX bundle, but it is perhaps still a part of your LATEX distribution. Check your distribution or go to CTAN:/fonts/amsfonts/latex/ to obtain it.
5There is no uppercase Alpha, Beta etc. defined in LATEX2ε because it looks the same as a normal roman A, B…
∀x ∈ R : x2 ≥ 0
x2 ≥0 forallx∈R
x2 ≥0 forallx∈R
λ,ξ,π,θ,μ,Φ,Ω,∆

3.3 Building Blocks of a Mathematical Formula 47
character, so if you want a command to affect several characters, you have to group them together using curly braces: {…}.
Table 3.3 on page 66 lists a lot of binary relations like ⊆ and ⊥.
$p^3_{ij} \qquad
m_\text{Knuth}\qquad
\sum_{k=1}^3 k \\[5pt]
a^x+y \neq a^{x+y}\qquad
e^{x^2} \neq {e^x}^2$
The square root is entered as \sqrt; the nth root is generated with \sqrt[n]. The size of the root sign is determined automatically by LATEX. If just the sign is needed, use \surd.
See various kinds of arrows like 􏲁→ and ⇌ on Table 3.6 on page 67.
$\sqrt{x} \Leftrightarrow x^{1/2}
\quad \sqrt[3]{2}
\quad \sqrt{x^{2} + \sqrt{y}}
\quad \surd[x^2 + y^2]$
While the dot sign to indicate the multiplication operation is normally left out, it is sometimes written to help the eye in grouping a formula. Use \cdot to typeset a single centered dot. \cdots is three centered dots while \ldots sets the dots low (on the baseline). Besides that, there are \vdots for vertical and \ddots for diagonal dots. There are more examples in section 3.6.
$\Psi = v_1 \cdot v_2
\cdot \ldots \qquad
n! = 1 \cdot 2
\cdots (n-1) \cdot n$
The commands \overline and \underline create horizontal lines directly over or under an expression:
$0.\overline{3} =
\underline{\underline{1/3}}$
The commands \overbrace and \underbrace create long horizontal braces over or under an expression:
$\underbrace{\overbrace{a+b+c}^6
\cdot \overbrace{d+e+f}^7}
_\text{meaning of life} = 42$
p3 m ∑3 k ij Knuth k=1
ax+y̸=ax+y ex2 ̸=ex2
√x⇔x1/2 √32 √x2+√y √[x2+y2]
Ψ = v1 ·v2 ·… n! = 1·2···(n−1)·n
0.3 = 1/3
67
􏱆 􏱇􏱄 􏱅 􏱆 􏱇􏱄 􏱅
a+b+c·d+e+f =42 􏱄 􏱅􏱆 􏱇
meaning of life

48
Typesetting Mathematical Formulae
To add mathematical accents such as small arrows or tilde signs to variables, the commands given in Table 3.1 on page 65 might be useful. Wide hats and tildes covering several characters are generated with \widetilde and \widehat. Notice the difference between \hat and \widehat and the placement of \bar for a variable with subscript. The apostrophe mark ‘ gives a prime:
$f(x) = x^2 \qquad f'(x)
= 2x \qquad f”(x) = 2\\[5pt]
\hat{XY} \quad \widehat{XY}
\quad \bar{x_0} \quad \bar{x}_0$
Vectors are often specified by adding small arrow symbols on the tops of variables. This is done with the \vec command. The two commands \overrightarrow and \overleftarrow are useful to denote the vector from A to B:
$\vec{a} \qquad
\vec{AB} \qquad
\overrightarrow{AB}$
Names of functions are often typeset in an upright font, and not in italics as variables are, so LATEX supplies the following commands to typeset the most common function names:
\arccos \arcsin \arctan
\arg
\sinh
\sec \sin
f(x) = x2 f′(x) = 2x f′′(x) = 2
\cos \csc \exp \ker \limsup \cosh \deg \gcd \lg \ln \cot \det \hom \lim \log \coth \dim \inf \liminf \max \sup \tan \tanh \min \Pr
\begin{equation*}
\lim_{x \rightarrow 0}
\frac{\sin x}{x}=1
\end{equation*}
For functions missing from the list, use the \DeclareMathOperator com- mand. There is even a starred version for functions with limits. This com- mand works only in the preamble so the commented lines in the example below must be put into the preamble.
%\DeclareMathOperator{\argh}{argh}
%\DeclareMathOperator*{\nut}{Nut}
\begin{equation*}
3\argh = 2\nut_{x=1}
\end{equation*}
ˆ􏱸
XY XY x ̄ x ̄ 00

⃗a AB AB
−→
lim sin x = 1 x→0 x
3argh = 2Nut x=1

3.3 Building Blocks of a Mathematical Formula 49
For the modulo function, there are two commands: \bmod for the binary operator “a mod b” and \pmod for expressions such as “x ≡ a (mod b):”
$a\bmod b \\
x\equiv a \pmod{b}$
A built-up fraction is typeset with the \frac{…}{…} command. In in-line equations, the fraction is shrunk to fit the line. This style is obtainable in display style with \tfrac. The reverse, i.e. display style fraction in text, is made with \dfrac. Often the slashed form 1/2 is preferable, because it looks better for small amounts of ‘fraction material:’
In display style:
\begin{equation*}
3/8 \qquad \frac{3}{8}
\qquad \tfrac{3}{8}
\end{equation*}
In text style:
$1\frac{1}{2}$~hours \qquad
$1\dfrac{1}{2}$~hours
Here the \partial command for partial derivatives is used:
\begin{equation*}
\sqrt{\frac{x^2}{k+1}}\qquad
x^\frac{2}{k+1}\qquad
\frac{\partial^2f}
{\partial x^2}
\end{equation*}
To typeset binomial coefficients or similar structures, use the command \binom from amsmath:
Pascal’s rule is
\begin{equation*}
\binom{n}{k} =\binom{n-1}{k}
+ \binom{n-1}{k-1}
\end{equation*}
For binary relations it may be useful to stack symbols over each other. \stackrel{#1}{#2} puts the symbol given in #1 in superscript-like size over #2 which is set in its usual position.
\begin{equation*}
f_n(x) \stackrel{*}{\approx} 1
\end{equation*}
a mod b
x≡a (modb)
In display style:
3 8
3 8
3/8
In text style: 1 1 hours 1 1 hours 22

x2 2 ∂2f xk+1
k+1 ∂x2
Pascal’s rule is
(n) (n − 1) (n − 1) k= k +k−1
f n ( x ) ≈∗ 1

50 Typesetting Mathematical Formulae
The integral operator is generated with \int, the sum operator with \sum, and the product operator with \prod. The upper and lower limits are specified with ^ and _ like superscripts and subscripts:
\begin{equation*}
\sum_{i=1}^n \qquad
\int_0^{\frac{\pi}{2}} \qquad
\prod_\epsilon
\end{equation*}
To get more control over the placement of indices in complex expressions, amsmath provides the \substack command:
\begin{equation*}
\sum^n_{\substack{0 0.
\end{array} \right.
\end{equation*}
The cases environment from amsmath simplifies the syntax, so it is worth a look:
\begin{equation*}
|x| =
\begin{cases}
-x & \text{if } x < 0,\\ 0 & \text{if } x = 0,\\ x & \text{if } x > 0.
\end{cases}
\end{equation*}
Matrices can be typeset by array, but amsmath provides a better solu- tion using the different matrix environments. There are six versions with dif- ferent delimiters: matrix (none), pmatrix (, bmatrix [, Bmatrix {, vmatrix | and Vmatrix ∥. You don’t have to specify the number of columns as with array. The maximum number is 10, but it is customisable (though it is not very often you need 10 columns!):
\begin{equation*}
\begin{matrix}
1 & 2 \\
3&4 \end{matrix} \qquad \begin{bmatrix}
p_{11} & p_{12} & \ldots
& p_{1n} \\
p_{21} & p_{22} & \ldots
& p_{2n} \\
\vdots & \vdots & \ddots
& \vdots \\
p_{m1} & p_{m2} & \ldots
& p_{mn}
\end{bmatrix}
\end{equation*}
−x ifx<0, |x|= 0 ifx=0, x ifx>0.
 −x
|x| = 0 x
if x < 0, if x = 0, if x > 0.

p11 p12 … p1n
1 2  p21 p22 . . . p2n  34 . . … .
pm1 pm2 … pmn

3.7 Spacing in Math Mode 59 3.7 Spacing in Math Mode
If the spacing within formulae chosen by LATEX is not satisfactory, it can be adjusted by inserting special spacing commands: \, for 3 quad ( ), \: for
18
4 quad ( ) and \; for 5 quad ( ). The escaped space character \␣ generates 18 18
a medium sized space comparable to the interword spacing and \quad ( ) and \qquad ( ) produce large spaces. The size of a \quad corresponds to the width of the character ‘M’ of the current font. \! produces a negative space of − 3 quad (− ).
18
\begin{equation*}
\int_1^2 \ln x \mathrm{d}x
\qquad
\int_1^2 \ln x \,\mathrm{d}x
\end{equation*}
Note that ‘d’ in the differential is conventionally set in roman. In the next example, we define a new command \ud (upright d) which produces “d” (notice the spacing before the d), so we don’t have to write it every time. The \newcommand is placed in the preamble.
\newcommand{\ud}{\,\mathrm{d}}
\begin{equation*}
\int_a^b f(x)\ud x
\end{equation*}
If you want to typeset multiple integrals, you’ll discover that the spacing between the integrals is too wide. You can correct it using \!, but ams- math provides an easier way for fine-tuning the spacing, namely the \iint, \iiint, \iiiint, and \idotsint commands.
\newcommand{\ud}{\,\mathrm{d}}
\begin{IEEEeqnarray*}{c}
\int\int f(x)g(y)
\ud x \ud y \\
\int\!\!\!\int
f(x)g(y) \ud x \ud y \\
\iint f(x)g(y) \ud x \ud y
\end{IEEEeqnarray*}
See the electronic document testmath.tex (distributed with AMS-LATEX) or Chapter 8 of The LATEX Companion [3] for further details.
∫2 ∫2
lnxdx lnxdx 11
∫b
f(x)dx
a
∫∫
f (x)g(y) dx dy ∫∫
f (x)g(y) dx dy ∫∫
f (x)g(y) dx dy

60
Typesetting Mathematical Formulae
3.7.1 Phantoms
When vertically aligning text using ^ and _ LATEX is sometimes just a little too helpful. Using the \phantom command you can reserve space for charac- ters that do not show up in the final output. The easiest way to understand this is to look at an example:
\begin{equation*}
{}^{14}_{6}\text{C}
\qquad \text{versus} \qquad
{}^{14}_{\phantom{1}6}\text{C}
\end{equation*}
If you want to typeset a lot of isotopes as in the example, the mhchem package is very useful for typesetting isotopes and chemical formulae too.
3.8 Fiddling with the Math Fonts
Different math fonts are listed on Table 3.14 on page 69.
$\Re \qquad
\mathcal{R} \qquad
\mathfrak{R} \qquad
\mathbb{R} \qquad $
The last two require amssymb or amsfonts.
Sometimes you need to tell LATEX the correct font size. In math mode, this is set with the following four commands:
\displaystyle (123), \textstyle (123), \scriptstyle (123) and \scriptscriptstyle (123).
If ∑ is placed in a fraction, it’ll be typeset in text style unless you tell LATEX otherwise:
\begin{equation*}
P = \frac{\displaystyle{
\sum_{i=1}^n (x_i- x)
(y_i- y)}}
{\displaystyle{\left[
\sum_{i=1}^n(x_i-x)^2
\sum_{i=1}^n(y_i- y)^2
\right]^{1/2}}}
\end{equation*}
Changing styles generally affects the way big operators and limits are displayed.
14 C versus 14 C 66
RRRR
P=[ i=1 ∑n
(xi − x)2
]1/2 (yi − y)2
∑n
(xi − x)(yi − y)
i=1
∑n i=1

3.9 Theorems, Lemmas, … 61 3.8.1 Bold Symbols
It is quite difficult to get bold symbols in LATEX; this is probably intentional as amateur typesetters tend to overuse them. The font change command \mathbf gives bold letters, but these are roman (upright) whereas math- ematical symbols are normally italic, and furthermore it doesn’t work on lower case Greek letters. There is a \boldmath command, but this can only be used outside math mode. It works for symbols too, though:
$\mu, M \qquad
\mathbf{\mu}, \mathbf{M}$
\qquad \boldmath{$\mu, M$}
The package amsbsy (included by amsmath) as well as the package bm from the tools bundle make this much easier as they include a \boldsymbol command:
$\mu, M \qquad
\boldsymbol{\mu}, \boldsymbol{M}$
3.9 Theorems, Lemmas, …
When writing mathematical documents, you probably need a way to typeset “Lemmas”, “Definitions”, “Axioms” and similar structures.
The name argument is a short keyword used to identify the “theorem”. With the text argument you define the actual name of the “theorem”, which will be printed in the final document.
The arguments in square brackets are optional. They are both used to specify the numbering used on the “theorem”. Use the counter argument to specify the name of a previously declared “theorem”. The new “theorem” will then be numbered in the same sequence. The section argument allows you to specify the sectional unit within which the “theorem” should get its numbers.
After executing the \newtheorem command in the preamble of your doc- ument, you can use the following command within the document.
\begin{name}[text]
This is my interesting theorem \end{name}
The amsthm package (part of AMS-LATEX) provides the \theoremstyle{style} command which lets you define what the theorem is all about by picking from
μ,M μ,M μ,M
μ,M μ,M
\newtheorem{name}[counter]{text}[section]

62
Typesetting Mathematical Formulae
three predefined styles: definition (fat title, roman body), plain (fat title, italic body) or remark (italic title, roman body).
This should be enough theory. The following examples should remove any remaining doubt, and make it clear that the \newtheorem environment is way too complex to understand.
First define the theorems:
\theoremstyle{definition} \newtheorem{law}{Law}
\theoremstyle{plain}
\theoremstyle{remark}
\newtheorem{jury}[law]{Jury}
\newtheorem*{marg}{Margaret}
Law 1. Don’t hide in the witness box Jury 2 (The Twelve). It could be you! So
beware and see law 1.
Jury 3. You will disregard the last state-
ment.
Margaret. No, No, No Margaret. Denis!
\begin{law} \label{law:box}
Don’t hide in the witness box
\end{law}
\begin{jury}[The Twelve]
It could be you! So beware and
see law~\ref{law:box}.\end{jury}
\begin{jury}
You will disregard the last
statement.\end{jury}
\begin{marg}No, No, No\end{marg}
\begin{marg}Denis!\end{marg}
The “Jury” theorem uses the same counter as the “Law” theorem, so it gets a number that is in sequence with the other “Laws”. The argument in square brackets is used to specify a title or something similar for the theorem.
\newtheorem{mur}{Murphy}[section]
\begin{mur} If there are two or
more ways to do something, and
one of those ways can result in
a catastrophe, then someone
will do it.\end{mur}
The “Murphy” theorem gets a number that is linked to the number of the current section. You could also use another unit, for example chapter or subsection.
If you want to customize your theorems down to the last dot, the nthe- orem package offers a plethora of options.
3.9.1 Proofs and End-of-Proof Symbol
The amsthm package also provides the proof environment.
Murphy 3.9.1. If there are two or more ways to do something, and one of those ways can result in a catastrophe, then someone will do it.

3.9 Theorems, Lemmas, … 63
\begin{proof}
Trivial, use
\begin{equation*}
E=mc^2.
\end{equation*}
\end{proof}
With the command \qedhere you can move the ‘end of proof’ symbol
around for situations where it would end up alone on a line.
\begin{proof}
Trivial, use
\begin{equation*}
E=mc^2. \qedhere
\end{equation*}
\end{proof}
Unfortunately, this correction does not work for IEEEeqnarray:
\begin{proof}
This is a proof that ends
with an equation array:
\begin{IEEEeqnarray*}{rCl}
a & = & b + c \\
& = & d + e. \qedhere
\end{IEEEeqnarray*}
\end{proof}
The reason for this is the internal structure of IEEEeqnarray: it always puts two invisible columns at both sides of the array that only contain a stretchable space. By this IEEEeqnarray ensures that the equation array is horizontally centered. The \qedhere command should actually be put outside this stretchable space, but this does not happen as these columns are invisible to the user.
There is a very simple remedy. Define the stretching explicitly!
\begin{proof}
This is a proof that ends
with an equation array:
\begin{IEEEeqnarray*}{+rCl+x*}
a & = & b + c \\
& = & d + e. & \qedhere
\end{IEEEeqnarray*}
\end{proof}
Note that the + in {+rCl+x*} denotes stretchable spaces, one on the left of the equations (which, if not specified, will be done automatically by IEEEeqnarray!) and one on the right of the equations. But now on the
Proof. Trivial, use
E = mc2.
Proof. Trivial, use
E = mc2.
Proof. This is a proof that ends with an equation array:
a=b+c = d + e.
Proof. This is a proof that ends with an equation array:
a=b+c = d + e.

64
Typesetting Mathematical Formulae
right, after the stretching column, we add an empty column x. This column will only be needed on the last line if the \qedhere command is put there. Finally, we specify a *. This is a null-space that prevents IEEEeqnarray from adding another unwanted +-space!
In the case of equation numbering, there is a similar problem. Comparing
\begin{proof}
This is a proof that ends
with a numbered equation:
\begin{equation}
a = b + c.
\end{equation}
\end{proof}
with
\begin{proof}
This is a proof that ends
with a numbered equation:
\begin{equation}
a = b + c. \qedhere
\end{equation}
\end{proof}
you notice that in the (correct) second version the 2 is much closer to the equation than in the first version.
Similarly, the correct way of putting the QED-symbol at the end of an equation array is as follows:
\begin{proof}
This is a proof that ends
with an equation array:
\begin{IEEEeqnarray}{+rCl+x*}
a & = & b + c \\
& = & d + e. \\
&&& \qedhere\nonumber
\end{IEEEeqnarray}
\end{proof}
which contrasts with
\begin{proof}
This is a proof that ends
with an equation array:
\begin{IEEEeqnarray}{rCl}
a & = & b + c \\
& = & d + e.
\end{IEEEeqnarray}
\end{proof}
Proof. This is a proof that ends with a numbered equation:
a = b+c. (3.41)
Proof. This is a proof that ends with a numbered equation:
a = b+c. (3.42)
Proof. This is a proof that ends with an equation array:
a=b+c (3.43) = d + e. (3.44)
Proof. This is a proof that ends with an equation array:
a=b+c (3.45) = d + e. (3.46)

3.10 List of Mathematical Symbols 65 3.10 List of Mathematical Symbols
The following tables demonstrate all the symbols normally accessible from math mode.
Note that some tables show symbols only accessible after loading the amssymb package in the preamble of your document12. If the AMS pack- age and fonts are not installed on your system, have a look at CTAN:pkg/ amslatex. An even more comprehensive list of symbols can be found at CTAN:info/symbols/comprehensive.
Table 3.1: Math Mode Accents.
aˆ \hat{a} aˇ \check{a} a ̃ \tilde{a} a` \grave{a} a ̇ \dot{a} a ̈ \ddot{a}
a ̄ \bar{a}
a ́ \acute{a}
̊a \mathring{a}
There is no uppercase of some of the letters like \Alpha, \Beta and so on, because they look the same as normal roman letters: A, B…
α \alpha θ
β \beta θ
γ \gamma ι
δ \delta κ
ε \epsilon λ
ε \varepsilon μ
ζ \zeta ν
η \eta ξ
Γ \Gamma Λ
∆ \Delta Ξ
Θ \Theta Π \Pi Φ \Phi
\theta o \vartheta π \iota π \kappa ρ \lambda ρ \mu σ \nu ς \xi τ \Lambda Σ \Xi Υ
o υ \upsilon \pi φ \phi \varpi φ \varphi \rho χ \chi \varrho ψ \psi \sigma ω \omega \varsigma
􏰱
⃗a \vec{a} AAA \widehat{AAA} 􏰲
a ̆ \breve{a} AAA \widetilde{AAA}
Table 3.2: Greek Letters.
\tau
\Sigma Ψ \Psi \Upsilon Ω \Omega
12The tables were derived from symbols.tex by David Carlisle and subsequently changed extensively as suggested by Josef Tkadlec.

66
Typesetting Mathematical Formulae
Table 3.3: Binary Relations.
You can negate the following symbols by prefixing them with a \not com- mand.
<<>>==
≤ ≪ ≺ ⪯ ⊂ ⊆ ⊏ ⊑ ∈ ⊢ | ⌣ :
++
± \pm
· \cdot
× \times
∪ \cup
⊔ \sqcup
∨ \vee , \lor
⊕ \oplus
⊙ \odot
⊗ \otimes
△ \bigtriangleup ▽
􏴷 \lhda 􏴹
􏴸 \unlhd a 􏴺 \unrhd a
: ∈/
aUse the latexsym package to access this symbol
\geq or \ge ≡ \gg =. \succ ∼ \succeq ≃ \supset ≈ \supseteq ∼= \sqsupset a 1 \sqsupseteq ▷◁ \ni , \owns ∝ \dashv |= \parallel ⊥
\leq or \le ≥
\ll ≫
\prec ≻
\preceq ⪰
\subset ⊃
\subseteq ⊇
\sqsubset a ⊐
\sqsubseteq ⊒
\in ∋
\vdash ⊣
\mid ∥
\smile ⌢ \frown ≍ \asymp
\notin ̸= \neq or \ne
Table 3.4: Binary Operators.
−-
∓ \mp ÷ \div
◁ \triangleleft ▷ \triangleright ⋆ \star
∗ \ast
◦ \circ
• \bullet
⋄ \diamond
⊎ \uplus
⨿ \amalg
† \dagger ‡ \ddagger ≀ \wr
\ \setminus
∩ \cap
⊓ \sqcap
∧ \wedge , \land ⊖ \ominus
⊘ \oslash ⃝ \bigcirc
\bigtriangledown \rhd a
\equiv \doteq \sim \simeq \approx \cong \Join a \bowtie \propto \models \perp

3.10 List of Mathematical Symbols 67
−→
\overrightarrow{AB}
\overleftarrow{AB}
\overleftrightarrow{AB}
AB \underrightarrow{AB} −→
AB \underleftarrow{AB} ←−
AB \underleftrightarrow{AB} ←→
AB
←−
AB
←→
AB
∑ ∏ ⨿
∫ ⊕
← → ↔ ⇐ ⇒ ⇔ 􏰶→ ←􏲂 ↼ ↽ ⇌ ↑ ↕ ⇓ ↗ ↙ ;
\sum ∪ \prod ∩ \coprod ⊔ \int 􏱫 \bigoplus ⊗
\bigcup
\bigcap
\bigsqcup
\oint
\bigotimes
∨ \bigvee ∧ \bigwedge ⊎ \biguplus
Table 3.5: BIG Operators.
Table 3.6: Arrows.
\leftarrow or \gets ←− \rightarrow or \to −→ \leftrightarrow ←→ \Leftarrow ⇐= \Rightarrow =⇒ \Leftrightarrow ⇐⇒ \mapsto 􏰶−→ \hookleftarrow 􏲁→ \leftharpoonup ⇀ \leftharpoondown ⇁ \rightleftharpoons ⇐⇒ \uparrow ↓ \updownarrow ⇑ \Downarrow ⇕ \nearrow ↘ \swarrow ↖ \leadsto a
\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \longmapsto \hookrightarrow \rightharpoonup \rightharpoondown \iff (bigger spaces) \downarrow
\Uparrow
\Updownarrow
\searrow
\nwarrow
aUse the latexsym package to access this symbol
Table 3.7: Arrows as Accents.
⊙ \bigodot

68
Typesetting Mathematical Formulae

ħ
R ∀

∇ ⊥ ♢ ¬
· · ·
( ( ) [ [ or \lbrack ] { \{ or \lbrace } ⟨ \langle ⟩ | | or \vert ∥ / /\
)
] or \rbrack
\} or \rbrace \rangle
\| or \Vert \backslash ⇕
\uparrow
\downarrow
\updownarrow
\Uparrow
\Downarrow
\Updownarrow
Table 3.8: Delimiters.
⌊ \lfloor ⌋ \rfloor ⌉ \rceil ⌈ \lceil
Table 3.9: Large Delimiters.

 \lgroup  \rgroup  \lmoustache
 \arrowvert 􏱼􏱼 \Arrowvert  \bracevert 

\dots
\hbar ı \Re I \forall ∃ ‘′ \nabla △ \bot ⊤ \diamondsuit ♡ \neg or \lnot ♭
\cdots . \imath ȷ \Im א \exists ℧ \prime ∅ \triangle 2 \top ∠ \heartsuit ♣ \flat ♮
\vdots . . . \jmath l \aleph ℘ \mhoa ∂ \emptyset ∞ \Boxa 3 \angle √ \clubsuit ♠ \natural ♯
\ddots \ell
\wp \partial \infty \Diamond a \surd \spadesuit \sharp
\rmoustache
Table 3.10: Miscellaneous Symbols.
aUse the latexsym package to access this symbol
Table 3.11: Non-Mathematical Symbols. These symbols can also be used in text mode.
† \dag § \S © \copyright ® \textregistered ‡ \ddag ¶ \P £ \pounds % \%
↑ ↓ ↕ ⇑ ⇓

3.10 List of Mathematical Symbols 69
𝟋
\gimel ד \daleth
Required package
mathrsfs
amsfonts or amssymb amsfonts or amssymb
Table 3.12: AMS Delimiters.
⌜ \ulcorner ⌝ \urcorner ⌞ \llcorner
| \lvert | \rvert ∥ \lVert
Table 3.13: AMS Greek and Hebrew.
⌟ \lrcorner ∥ \rVert
\digamma κ
See Table 6.4 on 109 Example
ABCDEabcde1234
ABCDEabcde1234
ABCDEabcde1234
ABCDE
A BC DE
ABCDEabcde1234
ABCDE⅁⊮⊭⊯⋭
ג varkappa ב \beth\
Table 3.14: Math Alphabets.
for other math fonts. Command
\mathrm{ABCDE abcde 1234}
\mathit{ABCDE abcde 1234}
\mathnormal{ABCDE abcde 1234}
\mathcal{ABCDE abcde 1234}
\mathscr{ABCDE abcde 1234}
\mathfrak{ABCDE abcde 1234}
\mathbb{ABCDE abcde 1234}
Table 3.15: AMS Binary Operators.
∔ \dotplus
⋉ \ltimes
⋓ \doublecup ⊻ \veebar
⊞ \boxplus
⊠ \boxtimes
⊺ \intercal ⋎ \curlyvee
􏲇 \centerdot ⋊ \rtimes
⋒ \doublecap ⊼ \barwedge ⊟ \boxminus ⊡ \boxdot
⊛ \circledast ⋏ \curlywedge
⋇ \divideontimes ∖ \smallsetminus ⩞ \doublebarwedge ⊖ \circleddash
⊚ \circledcirc
⋌ \rightthreetimes ⋋ \leftthreetimes
70
Typesetting Mathematical Formulae

⩽ ⪕ ≦ ≪ ≲ ⪅ ≶ ⋚ ⪋ ≼ ⋞ ≾ ≾ ⫅ 􏴭 ◀ ▷ ▶ ⊵ ◁ ⊴
\lessdot ⋗ \leqslant ⩾ \eqslantless ⪖ \leqq ≧ \lll or \llless ≫ \lesssim ≳ \lessapprox ⪆ \lessgtr ≷ \lesseqgtr ⋛ \lesseqqgtr ⪌ \preccurlyeq ≽ \curlyeqprec ⋟ \precsim ≿ \precapprox ≿ \subseteqq ⫆ \shortparallel ⋑ \blacktriangleleft ⊐ \vartriangleright ∵ \blacktriangleright ⋐ \trianglerighteq ⌢ \vartriangleleft 􏴬 \trianglelefteq ∴
\gtrdot
\geqslant
\eqslantgtr
\geqq
\ggg
\gtrsim \gtrapprox \gtrless \gtreqless \gtreqqless \succcurlyeq \curlyeqsucc \succsim \succapprox \supseteqq \Supset ⊪ \sqsupset ϶ \because ∝ \Subset ≬ \smallfrown ⋔ \shortmid ⌣ \therefore ⊏
\doteqdot
\risingdotseq
\fallingdotseq
\eqcirc
\circeq
\triangleq
\bumpeq
\Bumpeq
\thicksim
\thickapprox
\approxeq
\backsim
\backsimeq
\vDash
\Vdash
\Vvdash
\backepsilon
\varpropto
\between
\pitchfork
\smallsmile
\sqsubset
Table 3.16: AMS Binary Relations.
≑ ≓ ≒ ≖ ⊜ ≜ ≏ ≎ ∼ ≈ ≊ ∽ ⋍ ⊨ ⊩

3.10 List of Mathematical Symbols 71
Table 3.17: AMS Arrows.
􏵲􏵰􏵰 \dashleftarrow 􏵰􏵰􏵱 ⇔ \leftleftarrows ⇒ ⇆ \leftrightarrows ⇄ ⇚ \Lleftarrow ⇛ ↞ \twoheadleftarrow ↠ ↢ \leftarrowtail ↣ ⇋ \leftrightharpoons ⇌ ↰ \Lsh ↱ ↫ \looparrowleft ↬ ↶ \curvearrowleft ↷ ⟲ \circlearrowleft ⟳ ⊸ \multimap ⇈ ⇊ \downdownarrows ↿ ↾ \upharpoonright ⇂ ⇝ \rightsquigarrow ↭
\dashrightarrow
\rightrightarrows
\rightleftarrows
\Rrightarrow
\twoheadrightarrow
\rightarrowtail
\rightleftharpoons
\Rsh
\looparrowright
\curvearrowright
\circlearrowright
\upuparrows
\upharpoonleft
\downharpoonright
\leftrightsquigarrow

72
Typesetting Mathematical Formulae
Table 3.18: AMS Negated Binary Relations and Arrows.
≮ ⪇ ≰ ⩽̸ ≨ ≨ ≦̸ 􏳽 ⪉ ⊀ ⪯̸ ⪵ ⋨ ⪹ ⊊ ⊊ ⊈ ⫋ ↚ ⇍ ħ □ △ ▽ ♢ ∠ ⧸ ∄ ð \nless \lneq \nleq \nleqslant \lneqq \lvertneqq \nleqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \subsetneq \varsubsetneq \nsubseteq \subsetneqq ≯

≱
⩾̸


≧̸
􏳾

⊁
⪰̸





⊉

\ngtr 􏴌 \gneq 􏴍 \ngeq ⫅̸ \ngeqslant ⫆̸ \gneqq ∤ \gvertneqq ∦ \ngeqq 􏴒 \gnsim 􏴓 \gnapprox ≁ \nsucc ≇ \nsucceq ⊬ \succneqq ⊭ \succnsim ⊮ \succnapprox ⊯ \supsetneq ⋪ \varsupsetneq ⋫ \nsupseteq ⋬ \supsetneqq ⋭
\nrightarrow ↮
\varsubsetneqq
\varsupsetneqq
\nsubseteqq
\nsupseteqq
\nmid
\nparallel
\nshortmid
\nshortparallel
\nsim
\ncong
\nvdash
\nvDash
\nVdash
\nVDash
\ntriangleleft
\ntriangleright
\ntrianglelefteq
\ntrianglerighteq
\nleftrightarrow
\nLeftrightarrow
\nleftarrow ↛ \nLeftarrow ⇏
\nRightarrow
⇎
\hbar
\square
\vartriangle
\triangledown
\lozenge
\angle
\diagup
\nexists
\eth
\Bbbk
\circledS
\complement
\Game
\bigstar
\backprime
\varnothing
\mho
Table 3.19: AMS Miscellaneous.
ħ \hslash k
■ \blacksquare S ▲ \blacktriangle ∁ ▼ \blacktriangledown ⅁ ♦ \blacklozenge ⋆ ∡ \measuredangle
⧹ \diagdown ‵ Ⅎ \Finv ∅ ∢ \sphericalangle ℧

Chapter 4 Specialities
When putting together a large document, LATEX will help with some special features like index generation, bibliography management, and other things. A much more complete description of specialities and enhancements possible with LATEX can be found in the LATEX Manual [1] and The LATEX Companion [3].
4.1 Bibliography
Produce a bibliography with the thebibliography environment. Each entry starts with
The marker is then used to cite the book, article or paper within the document.
If you do not use the label option, the entries will get enumerated auto- matically. The parameter after the \begin{thebibliography} command defines how much space to reserve for the number of labels. In the exam- ple below, {99} tells LATEX to expect that none of the bibliography item numbers will be wider than the number 99.
\bibitem[label]{marker}
\cite{marker }

74 Specialities
Partl~\cite{pa} has
proposed that \ldots
\begin{thebibliography}{99}
\bibitem{pa} H.~Partl:
\emph{German \TeX},
TUGboat Volume~9, Issue~1 (1988)
\end{thebibliography}
For larger projects, you might want to check out the BibTEX program. BibTEX is included with most TEX distributions. It allows you to main- tain a bibliographic database and then extract the references relevant to things you cited in your paper. The visual presentation of BibTEX-generated bibliographies is based on a style-sheets concept that allows you to create bibliographies following a wide range of established designs.
4.2 Indexing
A very useful feature of many books is their index. With LATEX and the support program makeindex,1 an index can be generated quite easily. This introduction will only explain the basic index generation commands. For a more in-depth view, please refer to The LATEX Companion [3].
To enable their indexing feature of LATEX, the makeidx package must be loaded in the preamble with
and the special indexing commands must be enabled by putting the
command in the preamble.
1On systems not necessarily supporting filenames longer than 8 characters, the program may be called makeidx.
Partl [1] has proposed that …
Bibliography
[1] H. Partl: German TEX, TUGboat Volume 9, Issue 1 (1988)
\usepackage{makeidx}
\makeindex

4.2 Indexing
Example
\index{hello}
\index{hello!Peter}
\index{Sam@\textsl{Sam}}
\index{Lin@\textbf{Lin}}
\index{Kaese@K\”ase}
\index{ecole@\’ecole}
\index{Jenny|textbf}
\index{Joe|textit}
75
Table 4.1: Index Key Syntax Examples.
Index Entry
hello, 1 Peter, 3
Sam, 2 Lin, 7 Käse, 33 école, 4 Jenny, 3 Joe, 5
Comment
Plain entry
Subentry under ‘hello’ Formatted entry Formatted entry Formatted entry Formatted entry Formatted page number Formatted page number
The content of the index is specified with
\index{key@formatted_entry}
commands, where formatted_entry will appear in the index and key will be used for sorting. The formatted_entry is optional. If it is missing the key will be used. You enter the index commands at the points in the text that you want the final index entries to point to. Table 4.1 explains the syntax with several examples.
When the input file is processed with LATEX, each \index command writes an appropriate index entry, together with the current page number, to a special file. The file has the same name as the LATEX input file, but a different extension (.idx). This .idx file can then be processed with the makeindex program:
The makeindex program generates a sorted index with the same base file name, but this time with the extension .ind. If now the LATEX input file is processed again, this sorted index gets included into the document at the point where LATEX finds
The showidx package that comes with LATEX2ε prints out all index en- tries in the left margin of the text. This is quite useful for proofreading a document and verifying the index.
Note that the \index command can affect your layout if not used care- fully.
makeindex filename
\printindex

76 Specialities
My Word \index{Word}. As opposed
to Word\index{Word}. Note the
position of the full stop.
makeindex has no clue about characters outside the ASCII range. To get the sorting correct, use the @ character as shown in the Käse and école examples above.
4.3 Fancy Headers
The fancyhdr package,2 written by Piet van Oostrum, provides a few simple commands that allow you to customize the header and footer lines of your document. Look at the top of this page, for an application of this package.
\documentclass{book}
\usepackage{fancyhdr}
\pagestyle{fancy}
% with this we ensure that the chapter and section
% headings are in lowercase.
\renewcommand{\chaptermark}[1]{%
\markboth{#1}{}}
\renewcommand{\sectionmark}[1]{%
\markright{\thesection\ #1}}
\fancyhf{} % delete current header and footer
\fancyhead[LE,RO]{\bfseries\thepage}
\fancyhead[LO]{\bfseries\rightmark}
\fancyhead[RE]{\bfseries\leftmark}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\addtolength{\headheight}{0.5pt} % space for the rule
\fancypagestyle{plain}{%
\fancyhead{} % get rid of headers on plain pages
\renewcommand{\headrulewidth}{0pt} % and the line
}
Figure 4.1: Example fancyhdr Setup.
The tricky problem when customising headers and footers is to get things like running section and chapter names in there. LATEX accomplishes this with a two-stage approach. In the header and footer definition, you use the commands \rightmark and \leftmark to represent the current section
2Available from CTAN://macros/latex/contrib/supported/fancyhdr.
My Word . As opposed to Word. Note the position of the full stop.

4.4 The Verbatim Package 77
and chapter heading, respectively. The values of these two commands are overwritten whenever a chapter or section command is processed.
For ultimate flexibility, the \chapter command and its friends do not redefine \rightmark and \leftmark themselves. They call yet another com- mand (\chaptermark, \sectionmark, or \subsectionmark) that is respon- sible for redefining \rightmark and \leftmark.
If you want to change the look of the chapter name in the header line, you need only “renew” the \chaptermark command.
Figure 4.1 shows a possible setup for the fancyhdr package that makes the headers look about the same as they look in this booklet. In any case, I sug- gest you fetch the documentation for the package at the address mentioned in the footnote.
4.4 The Verbatim Package
Earlier in this book, you got to know the verbatim environment. In this section, you are going to learn about the verbatim package. The verbatim package is basically a re-implementation of the verbatim environment that works around some of the limitations of the original verbatim environment. This by itself is not spectacular, but the implementation of the verbatim package added new functionality, which is why I am mentioning the package here. The verbatim package provides the
command, which allows you to include raw ASCII text into your document as if it were inside a verbatim environment.
As the verbatim package is part of the ‘tools’ bundle, you should find it pre-installed on most systems. If you want to know more about this package, make sure to read [10].
4.5 Installing Extra Packages
Most LATEX installations come with a large set of pre-installed style packages, but many more are available on the net. The main place to look for style packages on the Internet is CTAN (http://www.ctan.org/).
Packages such as geometry, hyphenat, and many others are typically made up of two files: a file with the extension .ins and another with the extension .dtx. There will often be a readme.txt with a brief description of the package. You should of course read this file first.
In any event, once you have copied the package files onto your machine, you still have to process them in a way that (a) tells your TEX distribution
\verbatiminput{filename}

78
Specialities
about the new style package and (b) gives you the documentation. Here’s how you do the first part:
1. Run LATEX on the .ins file. This will extract a .sty file.
2. Move the .sty file to a place where your distribution can find it. Usu- ally this is in your …/localtexmf/tex/latex subdirectory (Windows or OS/2 users should feel free to change the direction of the slashes).
3. Refresh your distribution’s file-name database. The command de- pends on the LATEXdistribution you use: TEXlive – texhash; web2c – maktexlsr; MiKTEX – initexmf –update-fndb or use the GUI.
Now extract the documentation from the .dtx file:
1. Run XƎLATEX on the .dtx file. This will generate a .pdf file. Note that you may have to run XƎLATEX several times before it gets the cross-references right.
2. Check to see if LATEX has produced a .idx file among the various files you now have. If you do not see this file, then the documentation has no index. Continue with step 5.
3. In order to generate the index, type the following:
(where name stands for the main-file name without any extension).
4. Run LATEX on the .dtx file once again.
5. Last but not least, make a .ps or .pdf file to increase your reading pleasure.
Sometimes you will see that a .glo (glossary) file has been produced. Run the following command between step 4 and 5:
makeindex -s gglo.ist -o name.gls name.glo
Be sure to run LATEX on the .dtx one last time before moving on to step 5.
4.6 LATEX and PDF
By Daniel Flipo < Daniel.Flipo@univ- lille1.fr>
PDF is a portable hypertext document format. Much as in a web page, some words in the document are marked as hyperlinks. They link to other places in the document or even to other documents. If you click on such a hyperlink you get transported to the destination of the link. In the context of LATEX, this means that all occurrences of \ref and \pageref become hyperlinks. Additionally, the table of contents, the index and all the other similar structures become collections of hyperlinks.
makeindex -s gind.ist name

4.6 LATEX and PDF 79
Most web pages you find today are written in HTML (HyperText Markup Language). This format has two significant disadvantages when writing scientific documents:
1. Including mathematical formulae into HTML documents is not gener- ally supported. While there is a standard for it, most browsers used today do not support it, or lack the required fonts.
2. Printing HTML documents is possible, but the results vary widely between platforms and browsers. The results are miles removed from the quality we have come to expect in the LATEX world.
There have been many attempts to create translators from LATEX to HTML. Some were even quite successful in the sense that they are able to produce legible web pages from a standard LATEX input file. But all of them cut corners left and right to get the job done. As soon as you start using more complex LATEX features and external packages things tend to fall apart. Authors wishing to preserve the unique typographic quality of their documents even when publishing on the web turn to PDF (Portable Document Format), which preserves the layout of the document and permits hypertext navigation. Most modern browsers come with plugins that allow the direct display of PDF documents.
All modern TEX engines can generate PDF files out of the box. If you worked through this introduction until here you will already be familiar with the process.
4.6.1 Hypertext Links
The hyperref adds two cool features to your LATEX PDF files:
1. The paper size is set according to your specification in the document
class call.
2. All references in your your document turn into hyperlinks.
Just add \usepackage{hyperref} as the last command into the pream- ble of your document.
Many options are available to customize the behaviour of the hyperref package:
• either as a comma separated list after the pdftex option
\usepackage{hyperref}
• or on individual lines with the command \hypersetup{options}. In the following list the default values are written in an upright font.

80
Specialities
bookmarks (=true,false) show or hide the bookmarks bar when displaying the document
unicode (=false,true) allows the use of characters of non-Latin based languages in Acrobat’s bookmarks
pdftoolbar (=true,false) show or hide Acrobat’s toolbar
pdfmenubar (=true,false) show or hide Acrobat’s menu
pdffitwindow (=false,true) adjust the initial magnification of the PDF when displayed
pdftitle (={text}) define the title that gets displayed in the Document Info window of Acrobat
pdfauthor (={text}) the name of the PDF’s author
pdfnewwindow (=false,true) define whether a new window should be
opened when a link leads out of the current document
colorlinks (=false,true) surround the links by colour frames (false) or colour the text of the links (true). The colour of these links can be configured using the following options (default colours are shown):
linkcolor (=red) colour of internal links (sections, pages, etc.) citecolor (=green) colour of citation links (bibliography) filecolor (=magenta) colour of file links
urlcolor (=cyan) colour of URL links (mail, web)
If you are happy with the defaults, use
\usepackage{hyperref}
To have the bookmark list open and links in colour (the =true values
are optional):
\usepackage[bookmarks,colorlinks]{hyperref}
When creating PDFs destined for printing, coloured links are not a good thing as they end up in gray in the final output, making it difficult to read. Use colour frames, which are not printed:
\usepackage{hyperref}
\hypersetup{colorlinks=false}
or make links black:

4.6 LATEX and PDF 81
\usepackage{hyperref}
\hypersetup{colorlinks,%
citecolor=black,%
filecolor=black,%
linkcolor=black,%
urlcolor=black,%
pdftex}
When you just want to provide information for the Document Info sec- tion of the PDF file:
\usepackage[pdfauthor={Pierre Desproges},%
pdftitle={Des femmes qui tombent},%
pdftex]{hyperref}
In addition to the automatic hyperlinks for cross references, it is possible to embed explicit links using
The code
The \href{http://www.ctan.org}{CTAN} website.
produces the output “CTAN”; a click on the word “CTAN” will take you to the CTAN website.
If the destination of the link is not a URL but a local file, use the \href command without the ’http://’ bit:
The complete document is \href{manual.pdf}{here}
which produces the text “The complete document is here”. A click on the word “here” will open the file manual.pdf. (The filename is relative to the location of the current document).
The author of an article might want her readers to easily send email messages by using the \href command inside the \author command on the title page of the document:
\author{Mary Oetiker $<$\href{mailto:mary@oetiker.ch}% {mary@oetiker.ch}$>$
Note that I have put the link so that my email address appears not only in the link but also on the page itself. I did this because the link \href{mailto:mary@oetiker.ch}{Mary Oetiker}
would work well within Acrobat, but once the page is printed the email address would not be visible anymore.
\href{url}{text}

82 Specialities 4.6.2 Problems with Links
Messages like the following:
! pdfTeX warning (ext4): destination with the same
identifier (name{page.1}) has been already used,
duplicate ignored
appear when a counter gets reinitialized, for example by using the command \mainmatter provided by the book document class. It resets the page num- ber counter to 1 prior to the first chapter of the book. But as the preface of the book also has a page number 1 all links to “page 1” would not be unique anymore, hence the notice that “duplicate has been ignored.”
The counter measure consists of putting plainpages=false into the hyperref options. This unfortunately only helps with the page counter. An even more radical solution is to use the option
hypertexnames=false, but this will cause the page links in the index to stop working.
4.6.3 Problems with Bookmarks
The text displayed by bookmarks does not always look like you expect it to look. Because bookmarks are “just text,” fewer characters are available for bookmarks than for normal LATEX text. Hyperref will normally notice such problems and put up a warning:
Package hyperref Warning:
Token not allowed in a PDFDocEncoded string:
Work around this problem by providing a text string for the bookmarks, which replaces the offending text:
Math expressions are a prime candidate for this kind of problem:
\section{\texorpdfstring{$E=mc^2$}%
{E = mc ** 2}}
which turns \section{$E=mc^2$} to “E = mc ** 2” in the bookmark area. If you write your document in Unicode and use the unicode option for the hyperref package to use Unicode characters in bookmarks, this will give you a much larger selection of characters to pick from when when using
\texorpdfstring.
\texorpdfstring{TEX text}{Bookmark Text}

4.7 Working with XƎLATEX and PDF 83
4.7 Working with XƎLATEX and PDF
By Axel Kielhorn < A.Kielhorn@web.de>
Most of the things said in the previous section are valid for XƎLATEX as well. There is a Wiki at http://wiki.xelatex.org/doku.php that collects
information relevant to XƎTEX and XƎLATEX.
4.7.1 The Fonts
In addition to the normal tfm based fonts, XƎLATEX is able to use any font known to the operating system. If you have the Linux Libertine fonts installed, you can simply say
\usepackage{fontspec}
\setmainfont[Ligatures=TeX]{Linux Libertine}
in the preamble. This will normally detect the italic and bold versions as well, so \textit and \textbf will work as usual. When the font is using OpenType technology you have access to many features which required switching to a separate font or using virtual fonts in the past. The main feature is the extended character set; a font may contain Latin, Greek and Cyrillic characters and the corresponding ligatures.
Many fonts contain at least two kinds of numerals, the normal lining numerals and so called old style (or lower case) numerals, which partly extend below the baseline. They may contain proportional numerals (the “1” takes less space than the “0”) or monospaced numerals which are suitable for tables.
\newfontfamily\LLln[Numbers=Lining]{(font)}
\newfontfamily\LLos[Numbers=OldStyle]{(font)}
\newfontfamily\LLlnm[Numbers=Lining,Numbers=Monospaced]{(font)}
\newfontfamily\LLosm[Numbers=OldStyle,Numbers=Monospaced]{(font)}
Almost all OpenType fonts contain the standard ligatures (fl fi ffi) but there are also some rare or historical ligatures like st, ct and tz. You may not want to use them in a technical report but they are fine for a novel. To enable these ligatures use either of the following lines:
\setmainfont[Ligatures=Rare]{(font)}
\setmainfont[Ligatures=Historic]{(font)}
\setmainfont[Ligatures=Historic,Ligatures=Rare]{(font)}
Not every font contains both sets of ligature, consult the font documen- tation or just try it out. Sometimes these ligatures are language dependent; for example a ligature used in Polish (fk) is not used in English. You have to add

84
Specialities
\setmainfont[Language=Polish]{(font)}
to enable the Polish ligatures.
Some fonts (like the commercial Adobe Garamond Premier Pro) contain
alternative glyphs that are activated by default in XƎLATEX distributed with TEXLive 20103. The result is a stylish “Q” with a descender reaching below the following “u”. To disable this feature you have to define the font with disabled contextuals:
\setmainfont[Contextuals=NoAlternate]{(font)}
To learn about fonts in XƎLATEX read the fontspec manual. Where do I get OpenType fonts?
If you have TeXLive installed, you already have some at …/texmf-dist/ fonts/opentype, just install them in your operating system. This collection does not include DejaVu, which is available at http://dejavu-fonts.org/.
Make sure that each font is only installed once, otherwise interesting results may happen.
You can use every font installed on your computer, but remember that other users may not have these fonts. The Zapfino font used in the fontspec manual is included in Mac OSX, but is not available on Windows comput- ers.4
Entering Unicode Characters
The number of characters in a font has grown but the number of keys on a regular keyboard has not. So, how do I enter non-ASCII characters?
If you write a large amount of text in a foreign language, you can in- stall a keyboard for that language and print out the character positions. (Most operatings system have some sort of virtual keyboard, just make a screenshot.)
If you rarely need an exotic character, you can simply pick it in the character palette.
Some environments (e. g. the X Window System) offer many methods to enter non-ASCII characters. Some editors (e. g. Vim and Emacs) offer ways to enter these characters. Read the manual for the tools you are using.
4.7.2 Compatibility Between XƎLATEX and pdfLATEX
There are a few things that are different between XƎLATEX and pdfLATEX.
3The behavior has changed with this version, it was off by default in earlier releases. 4A commercial version of the font called Zapfino Extra is available.

4.8 Creating Presentations 85
• A XƎLATEX document has to be written in Unicode (UTF-8) while pdfLATEX may use different input encodings.
• The microtype packages does not work with XƎLATEX yet, support for character protrusion is already under development.
• Everything font related has to be reviewed. (Unless you want to stick to Latin Modern.)
4.8 Creating Presentations
By Daniel Flipo < Daniel.Flipo@univ- lille1.fr>
You can present the results of your scientific work on a blackboard, with transparencies, or directly from your laptop using some presentation soft- ware.
pdfLATEX combined with the beamer class allows you to create presenta- tions in PDF, looking much like something you might be able to generate with LibreOffice or PowerPoint if you had a very good day, but much more portable because PDF readers are available on many more systems.
The beamer class uses graphicx, color and hyperref with options adapted to screen presentations.
When you compile the code presented in figure 4.2 with pdfLATEX you get a PDF file with a title page and a second page showing several items that will be revealed one at a time as you step though your presentation.
One of the advantages of the beamer class is that it produces a PDF file that is directly usable without first going through a POSTSCRIPT stage like prosper or requiring additional post processing like presentations created with the ppower4 package.
With the beamer class you can produce several versions (modes) of your document from the same input file. The input file may contain special instructions for the different modes in angular brackets. The following modes are available:
beamer for the presentation PDF discussed above. trans for transparencies.
handout for the printed version.
The default mode is beamer, change it by setting a different mode as a global option, like \documentclass[10pt,handout]{beamer} to print the handouts for example.
The look of the screen presentation depends on the theme you choose. Pick one of the themes shipped with the beamer class or create your own. See the beamer class documentation in beameruserguide.pdf for more in- formation on this.

86
Specialities
\documentclass[10pt]{beamer}
\mode{%
\usetheme[hideothersubsections,
right,width=22mm]{Goettingen}
}
\title{Simple Presentation}
\author[D. Flipo]{Daniel Flipo}
\institute{U.S.T.L. \& GUTenberg}
\titlegraphic{\includegraphics[width=20mm]{USTL}}
\date{2005}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\section{An Example}
\begin{frame}
\frametitle{Things to do on a Sunday Afternoon}
\begin{block}{One could \ldots}
\begin{itemize}
\item walk the dog\dots \pause
\item read a book\pause
\item confuse a cat\pause
\end{itemize}
\end{block}
and many other things
\end{frame}
\end{document}
Figure 4.2: Sample code for the beamer class

4.8 Creating Presentations 87
Let’s have a closer look at the code in figure 4.2.
For the screen version of the presentation \mode we have chosen the Goettingen theme to show a navigation panel integrated into the table of contents. The options allow us to choose the size of the panel (22 mm in this case) and its position (on the right side of the body text). The option hideothersubsections, shows the chapter titles, but only the subsections of the present chapter. There are no special settings for \mode and \mode. They appear in their standard layout.
The commands \title{}, \author{}, \institute{}, and \titlegraphic{} set the content of the title page. The optional arguments of \title[]{} and \author[]{} let you specify a special version of the title and the author name to be displayed on the panel of the Goettingen theme.
The titles and subtitles in the panel are created with normal \section{} and \subsection{} commands that you place outside the frame environ- ment.
The tiny navigation icons at the bottom of the screen also allow to nav- igate the document. Their presence is not dependent on the theme you choose.
The contents of each slide or screen has to be placed inside a frame environment. There is an optional argument in angular brackets (< and >), it allows us to suppress a particular frame in one of the versions of the presentation. In the example the first page would not be shown in the handout version due to the argument.
It is highly recommended to set a title for each slide apart from the title slide. This is done with the command \frametitle{}. If a subtitle is necessary use the block environment as shown in the example. Note that the sectioning commands \section{} and \subsection{} do not produce output on the slide proper.
The command \pause in the itemize environment lets you reveal the items one by one. For other presentation effects check out the commands \only, \uncover, \alt and \temporal. In many place it is possible to use angular brackets to further customize the presentation.
In any case make sure to read through the beamer class documentation beameruserguide.pdf to get a complete picture of what is in store for you. This package is being actively developed, check out their website to get the latest information. (http://latex-beamer.sourceforge.net/)

Chapter 5
Producing Mathematical Graphics
Most people use LATEX for typesetting their text. And since the structure ori- ented approach to authoring is so convenient, LATEX also offers a, if somewhat restricted, means for producing graphical output from textual descriptions. Fur- thermore, quite a number of LATEX extensions have been created in order to overcome these restrictions. In this section, you will learn about a few of them.
5.1 Overview
Creating graphical output with LATEX has a long tradition. It started out with the picture environment which allows you to create graphics by clev- erly placing predefined elements onto the canvas. A complete description can be found in the LATEX Manual [1]. The picture environment of LATEX 2ε brings with it the \qbezier command, “q” meaning “quadratic”. Many fre- quently used curves such as circles, ellipses, or catenaries can be satisfactorily approximated by quadratic Bézier curves, although this may require some mathematical toil. If, in addition, a programming language is used to gener- ate \qbezier blocks of LATEX input files, the picture environment becomes quite powerful.
Although programming pictures directly in LATEX is severely restricted, and often rather tiresome, there are still reasons for doing so. The documents thus produced are “small” with respect to bytes, and there are no additional graphics files to be dragged along.
This has been the state of things until a few years ago when Till Tantau of beamer fame came up with the Portable Graphics Format pgf and its companion package TikZ (tikz). This system lets you create high quality vector graphics with all current TEX systems including full support for pdf.

90
Producing Mathematical Graphics
Building on these basics, numerous packages have been written for spe- cific purposes. A wide variety of these packages is described in detail in The LATEX Graphics Companion [4].
Perhaps the most advanced graphical tool related with LATEX is META- POST. It is a stand-alone application based on Donald E. Knuth’s META- FONT. METAPOST has the very powerful and mathematically sophisti- cated programming language of METAFONT but contrary to METAFONT, it generates encapsulated POSTSCRIPT files, which can be imported in LATEX and even pdfLATEX. For an introduction, see A User’s Manual for META- POST [14], or the tutorial on [16].
A very thorough discussion of LATEX and TEX strategies for graphics (and fonts) can be found in TEX Unbound [15].
5.2 The picture Environment By Urs Oswald < osurs@bluewin.ch>
As mentioned above the picture environment is part of standard LATEX and it is great for simple tasks and also if you want to control the exact positioning of individual elements on a page. But if you are about to do any serious graphics work, you should look at TikZ as presented in section 5.3 on page 99.
5.2.1 Basic Commands
A picture environment1 is created with one of the two commands
or
The numbers x, y, x0, y0 refer to \unitlength, which can be reset any time (but not within a picture environment) with a command such as
The default value of \unitlength is 1pt. The first pair, (x, y), effects the reservation, within the document, of rectangular space for the picture. The optional second pair, (x0,y0), assigns arbitrary coordinates to the bottom left corner of the reserved rectangle.
1Believe it or not, the picture environment works out of the box, with standard LATEX2ε no package loading necessary.
\begin{picture}(x, y)…\end{picture}
\begin{picture}(x, y)(x0, y0)…\end{picture}
\setlength{\unitlength}{1.2cm}

5.2 The picture Environment 91 Most drawing commands have one of the two forms
or
\put(x, y){object}
\multiput(x, y)(∆x, ∆y){n}{object}
Bézier curves are an exception. They are drawn with the command
\qbezier(x1, y1)(x2, y2)(x3, y3)
5.2.2 Line Segments
\setlength{\unitlength}{5cm}
\begin{picture}(1,1)
\put(0,0){\line(0,1){1}}
\put(0,0){\line(1,0){1}}
\put(0,0){\line(1,1){1}}
\put(0,0){\line(1,2){.5}}
\put(0,0){\line(1,3){.3333}}
\put(0,0){\line(1,4){.25}}
\put(0,0){\line(1,5){.2}}
\put(0,0){\line(1,6){.1667}}
\put(0,0){\line(2,1){1}}
\put(0,0){\line(2,3){.6667}}
\put(0,0){\line(2,5){.4}}
\put(0,0){\line(3,1){1}}
\put(0,0){\line(3,2){1}}
\put(0,0){\line(3,4){.75}}
\put(0,0){\line(3,5){.6}}
\put(0,0){\line(4,1){1}}
\put(0,0){\line(4,3){1}}
\put(0,0){\line(4,5){.8}}
\put(0,0){\line(5,1){1}}
\put(0,0){\line(5,2){1}}
\put(0,0){\line(5,3){1}}
\put(0,0){\line(5,4){1}}
\put(0,0){\line(5,6){.8333}}
\put(0,0){\line(6,1){1}}
\put(0,0){\line(6,5){1}}
\end{picture}
􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣% 􏴶 􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣% 􏴶
􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣% 􏴶
􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣% 􏴶 , # 􏴻 􏴺 􏴹 􏴸 􏵂 􏴷 􏵈 􏵀 􏵇 􏰣 % 􏴶 , 􏵍􏵍
,# 􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣%􏴶 #􏵍􏰡􏰡
,􏵍 􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣%􏴶 # 􏰡”
,􏵍􏰡 􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣%􏴶# ”
􏴻 􏴺 􏴹 􏴸 􏵂 􏴷 􏵈 􏵀 􏵇􏰣% 􏴶 , 􏵍 􏰡 ” 􏴾 #􏴾
􏴻 􏴺 􏴹 􏴸 􏵂 􏴷 􏵈􏵀􏵇􏰣% 􏴶 , 􏵍 􏰡 ” 􏴾 ! ! #􏰡” !
􏴻 􏴺 􏴹 􏴸 􏵂 􏴷 􏵈 􏵀 􏵇􏰣% 􏴶 # 􏰡 􏴾
,􏵍􏰡” 􏴾 #􏴾
,􏵍” 􏴾 ! 􏰠􏰠
! 􏰠 􏵍”􏴾 ! 􏰠
,􏰡 􏰠 􏵋􏵋
#! 􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣%􏴶􏵍”􏴾! 􏰠 􏵋􏵋
􏰡􏰠
,#”􏴾! 􏵋
􏵍 􏰠􏵋 (
􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣%􏴶􏰡􏴾!􏰠 􏵋 ( ,#”!􏰠 􏵋 ((
􏵍􏴾 􏵋 ( 􏰡 􏰠􏵋 ( “! (
􏴻􏴺􏴹􏴸􏵂􏴷􏵈􏵀􏵇􏰣%􏴶􏴾􏰠􏵋 ( ,#􏵍 ! 􏵋 ( 􏰡”􏰠 ( 􏴾!􏵋(
􏰠􏵋( 􏵇􏰡􏰠􏵂%#,􏰣􏵍􏵈􏴹􏴷(􏴸”!􏵋􏵀􏴾􏴺􏴶􏴻 (

92
Producing Mathematical Graphics
Line segments are drawn with the command
The \line command has two arguments: 1. a direction vector,
2. a length.
The components of the direction vector are restricted to the integers
−6, −5, …, 5, 6,
and they have to be coprime (no common divisor except 1). The figure illustrates all 25 possible slope values in the first quadrant. The length is relative to \unitlength. The length argument is the vertical coordinate in the case of a vertical line segment, the horizontal coordinate in all other cases.
5.2.3 Arrows
\put(x, y){\line(x1, y1){length}}
\setlength{\unitlength}{0.75mm}
\begin{picture}(60,40)
\put(30,20){\vector(1,0){30}}
\put(30,20){\vector(4,1){20}}
\put(30,20){\vector(3,1){25}}
\put(30,20){\vector(2,1){30}}
\put(30,20){\vector(1,2){10}}
\thicklines
\put(30,20){\vector(-4,1){30}}
\put(30,20){\vector(-1,4){5}}
\thinlines
\put(30,20){\vector(-1,-1){5}}
\put(30,20){\vector(-1,-4){5}}
\end{picture}
Arrows are drawn with the command
For arrows, the components of the direction vector are even more nar- rowly restricted than for line segments, namely to the integers
−4, −3, …, 3, 4.
Components also have to be coprime (no common divisor except 1). Notice the effect of the \thicklines command on the two arrows pointing to the upper left.
CO 􏰤􏴷 C􏴷
*􏴾 C 􏴷 􏴾􏴾
XyX 􏴾􏰠􏰠1 X C􏴷􏴾􏰠
X 􏰠􏵋:􏵋 X 􏴾􏵋
XXC􏴷􏴾􏰠􏵋􏰠􏵋 – 􏴶􏴿􏴶􏴹
􏴹 􏴹
􏴹 􏴹􏵅
\put(x, y){\vector(x1, y1){length}}

5.2 The picture Environment 93 5.2.4 Circles
\setlength{\unitlength}{1mm}
\begin{picture}(60, 40)
\put(20,30){\circle{1}}
\put(20,30){\circle{2}}
\put(20,30){\circle{4}}
\put(20,30){\circle{8}}
\put(20,30){\circle{16}}
\put(20,30){\circle{32}}
\put(40,30){\circle{1}}
\put(40,30){\circle{2}}
\put(40,30){\circle{3}}
\put(40,30){\circle{4}}
\put(40,30){\circle{5}}
\put(40,30){\circle{6}}
\put(40,30){\circle{7}}
\put(40,30){\circle{8}}
\put(40,30){\circle{9}}
\put(40,30){\circle{10}}
\put(40,30){\circle{11}}
\put(40,30){\circle{12}}
\put(40,30){\circle{13}}
\put(40,30){\circle{14}}
\put(15,10){\circle*{1}}
\put(20,10){\circle*{2}}
\put(25,10){\circle*{3}}
\put(30,10){\circle*{4}}
\put(35,10){\circle*{5}}
\end{picture}
The command
draws a circle with center (x,y) and diameter (not radius) diameter. The picture environment only admits diameters up to approximately 14mm, and even below this limit, not all diameters are possible. The \circle* command produces disks (filled circles).
As in the case of line segments, one may have to resort to additional packages, such as eepic or pstricks. For a thorough description of these packages, see The LATEX Graphics Companion [4].
There is also a possibility within the picture environment. If one is not afraid of doing the necessary calculations (or leaving them to a program), arbitrary circles and ellipses can be patched together from quadratic Bézier curves. See Graphics in LATEX 2ε [16] for examples and Java source files.
‘$’$ #
􏵊 􏵈 􏵊􏵊 􏵈􏵈 􏵇􏰠
􏵅􏵂 bej behjm
􏵎􏰣 􏰢􏵋
􏵉 􏰤 􏵉􏵉 􏰤􏰤 􏵍􏵌
􏵄􏵃 􏵆􏰡
􏰯􏰺 “!
&%&% ruxz}
\put(x, y){\circle{diameter}}

94 Producing Mathematical Graphics 5.2.5 Text and Formulas
\setlength{\unitlength}{0.8cm}
\begin{picture}(6,5)
\thicklines
\put(1,0.5){\line(2,1){3}}
\put(4,2){\line(-2,1){2}}
\put(2,3){\line(-2,-5){1}}
\put(0.7,0.3){$A$}
\put(4.05,1.9){$B$}
\put(1.7,2.95){$C$}
\put(3.1,2.5){$a$}
\put(1.3,1.7){$b$}
\put(2.5,1.05){$c$}
\put(0.3,4){$F=
\sqrt{s(s-a)(s-b)(s-c)}$}
\put(3.5,0.4){$\displaystyle
s:=\frac{a+b+c}{2}$}
\end{picture}
As this example shows, text and formulas can be written into a picture environment with the \put command in the usual way.
5.2.6 \multiput and \linethickness
\setlength{\unitlength}{2mm}
\begin{picture}(30,20)
\linethickness{0.075mm}
\multiput(0,0)(1,0){26}%
{\line(0,1){20}}
\multiput(0,0)(0,1){21}%
{\line(1,0){25}}
\linethickness{0.15mm}
\multiput(0,0)(5,0){6}%
{\line(0,1){20}}
\multiput(0,0)(0,5){5}%
{\line(1,0){25}}
\linethickness{0.3mm}
\multiput(5,0)(10,0){2}%
{\line(0,1){20}}
\multiput(0,5)(0,10){2}%
{\line(1,0){25}}
\end{picture}
The command
has 4 arguments: the starting point, the translation vector from one ob-
F =

s(s−a)(s−b)(s−c) CHH
􏵂 Ha
b 􏵂 􏵂 H H􏴾 B
􏵂 􏴾􏴾􏴾
􏵂 􏴾􏴾 c a + b + c A􏵂􏴾 s:=2
\multiput(x, y)(∆x, ∆y){n}{object}

5.2 The picture Environment 95
ject to the next, the number of objects, and the object to be drawn. The \linethickness command applies to horizontal and vertical line segments, but neither to oblique line segments, nor to circles. It does, however, apply to quadratic Bézier curves!
5.2.7 Ovals
\setlength{\unitlength}{0.75cm}
\begin{picture}(6,4)
\linethickness{0.075mm}
\multiput(0,0)(1,0){7}%
{\line(0,1){4}}
\multiput(0,0)(0,1){5}%
{\line(1,0){6}}
\thicklines
\put(2,3){\oval(3,1.8)}
\thinlines
\put(3,2){\oval(3,1.8)}
\thicklines
\put(2,1){\oval(3,1.8)[tl]}
\put(4,1){\oval(3,1.8)[b]}
\put(4,3){\oval(3,1.8)[r]}
\put(3,1.5){\oval(1.8,0.4)}
\end{picture}
The command
or
produces an oval centered at (x,y) and having width w and height h. The optional position arguments b, t, l, r refer to “top”, “bottom”, “left”, “right”, and can be combined, as the example illustrates.
Line thickness can be controlled by two kinds of commands: \linethickness{length} on the one hand, \thinlines and \thicklines on the other. While \linethickness{length} applies only to horizontal and vertical lines (and quadratic Bézier curves), \thinlines and \thicklines apply to oblique line segments as well as to circles and ovals.
#
#
“!! #
􏴽
􏴺 􏴻
􏴼 ”
“!
!
\put(x, y){\oval(w, h)}
\put(x, y){\oval(w, h)[position]}

96 Producing Mathematical Graphics 5.2.8 Multiple Use of Predefined Picture Boxes
\setlength{\unitlength}{0.5mm}
\begin{picture}(120,168)
\newsavebox{\foldera}
\savebox{\foldera}
(40,32)[bl]{% definition
\multiput(0,0)(0,28){2}
{\line(1,0){40}}
\multiput(0,0)(40,0){2}
{\line(0,1){28}}
\put(1,28){\oval(2,2)[tl]}
\put(1,29){\line(1,0){5}}
\put(9,29){\oval(6,6)[tl]}
\put(9,32){\line(1,0){8}}
\put(17,29){\oval(6,6)[tr]}
\put(20,29){\line(1,0){19}}
\put(39,28){\oval(2,2)[tr]}
}
\newsavebox{\folderb}
\savebox{\folderb}
(40,32)[l]{% definition
\put(0,14){\line(1,0){8}}
\put(8,0){\usebox{\foldera}}
}
\put(34,26){\line(0,1){102}}
\put(14,128){\usebox{\foldera}}
\multiput(34,86)(0,-37){3}
{\usebox{\folderb}}
\end{picture}
A picture box can be declared by the command
then defined by
and finally arbitrarily often be drawn by
The optional position parameter has the effect of defining the ‘anchor point’ of the savebox. In the example it is set to bl which puts the anchor point into the bottom left corner of the savebox. The other position specifiers are top and right.
􏴹
􏴽􏴺
􏴽􏴺
􏴽􏴺
􏴽􏴺
􏴶
􏴹
􏴶
􏴶
􏴶
􏴹
􏴹
\newsavebox{name}
\savebox{name}(width,height)[position]{content}
\put(x, y){\usebox{name}}

5.2 The picture Environment 97
The name argument refers to a LATEX storage bin and therefore is of a command nature (which accounts for the backslashes in the current ex- ample). Boxed pictures can be nested: In this example, \foldera is used within the definition of \folderb.
The \oval command had to be used as the \line command does not work if the segment length is less than about 3 mm.
5.2.9 Quadratic Bézier Curves
\setlength{\unitlength}{0.8cm}
\begin{picture}(6,4)
\linethickness{0.075mm}
\multiput(0,0)(1,0){7}
{\line(0,1){4}}
\multiput(0,0)(0,1){5}
{\line(1,0){6}}
\thicklines
\put(0.5,0.5){\line(1,5){0.5}}
\put(1,3){\line(4,1){2}}
\qbezier(0.5,0.5)(1,3)(3,3.5)
\thinlines
\put(2.5,2){\line(2,-1){3}}
\put(5.5,0.5){\line(-1,5){0.5}}
\linethickness{1mm}
\qbezier(2.5,2)(5.5,0.5)(5,3)
\thinlines
\qbezier(4,2)(4,3)(3,3)
\qbezier(3,3)(2,3)(2,2)
\qbezier(2,2)(2,1)(3,1)
\qbezier(3,1)(4,1)(4,2)
\end{picture}
􏴺 􏴺 􏴺
􏵋􏵋􏵋􏵋􏵋
􏴺 􏴺
D D
As this example illustrates, splitting up a circle into 4 quadratic Bézier curves is not satisfactory. At least 8 are needed. The figure again shows the effect of the \linethickness command on horizontal or vertical lines, and of the \thinlines and the \thicklines commands on oblique line segments. It also shows that both kinds of commands affect quadratic Bézier curves, each command overriding all previous ones.
Let P1 = (x1, y1), P2 = (x2, y2) denote the end points, and m1, m2 the respective slopes, of a quadratic Bézier curve. The intermediate control point S = (x, y) is then given by the equations
rclx=

y =
m2x2 −m1x1 −(y2 −y1),
m2 − m1 (5.1)
yi +mi(x−xi) (i = 1, 2).
See Graphics in LATEX 2ε [16] for a Java program which generates the nec- essary \qbezier command line.
HH
􏴺 HD
HH
HH D
D D

98 Producing Mathematical Graphics 5.2.10 Catenary
\setlength{\unitlength}{1cm}
\begin{picture}(4.3,3.6)(-2.5,-0.25)
\put(-2,0){\vector(1,0){4.4}}
\put(2.45,-.05){$x$}
\put(0,0){\vector(0,1){3.2}}
\put(0,3.35){\makebox(0,0){$y$}}
\qbezier(0.0,0.0)(1.2384,0.0)
(2.0,2.7622)
\qbezier(0.0,0.0)(-1.2384,0.0)
(-2.0,2.7622)
\linethickness{.075mm}
\multiput(-2,0)(1,0){5}
{\line(0,1){3}}
\multiput(-2,0)(0,1){4}
{\line(1,0){4}}
\linethickness{.2mm}
\put( .3,.12763){\line(1,0){.4}} \put(.5,-.07237){\line(0,1){.4}} \put(-.7,.12763){\line(1,0){.4}} u \put(-.5,-.07237){\line(0,1){.4}} \put(.8,.54308){\line(1,0){.4}} \put(1,.34308){\line(0,1){.4}} \put(-1.2,.54308){\line(1,0){.4}} \put(-1,.34308){\line(0,1){.4}} \put(1.3,1.35241){\line(1,0){.4}} \put(1.5,1.15241){\line(0,1){.4}} \put(-1.7,1.35241){\line(1,0){.4}} \put(-1.5,1.15241){\line(0,1){.4}} \put(-2.5,-0.25){\circle*{0.2}} \end{picture}
y
6
In this figure, each symmetric half of the catenary y = cosh x − 1 is approximated by a quadratic Bézier curve. The right half of the curve ends in the point (2, 2.7622), the slope there having the value m = 3.6269. Using again equation (5.1), we can calculate the intermediate control points. They turn out to be (1.2384, 0) and (−1.2384, 0). The crosses indicate points of the real catenary. The error is barely noticeable, being less than one percent.
This example points out the use of the optional argument of the \begin{picture} command. The picture is defined in convenient “mathe- matical” coordinates, whereas by the command
\begin{picture}(4.3,3.6)(-2.5,-0.25)
its lower left corner (marked by the black disk) is assigned the coordinates (−2.5, −0.25).
– x

5.3 The PGF and TikZ Graphics Packages 99 5.2.11 Rapidity in the Special Theory of Relativity
\setlength{\unitlength}{0.8cm}
\begin{picture}(6,4)(-3,-2)
\put(-2.5,0){\vector(1,0){5}}
\put(2.7,-0.1){$\chi$}
\put(0,-1.5){\vector(0,1){3}}
\multiput(-2.5,1)(0.4,0){13}
{\line(1,0){0.2}}
\multiput(-2.5,-1)(0.4,0){13}
{\line(1,0){0.2}}
\put(0.2,1.4)
{$\beta=v/c=\tanh\chi$}
\qbezier(0,0)(0.8853,0.8853)
(2,0.9640)
\qbezier(0,0)(-0.8853,-0.8853)
(-2,-0.9640)
\put(-3,-2){\circle*{0.2}}
\end{picture}
The control points of the two Bézier curves were calculated with formu- las (5.1). The positive branch is determined by P1 = (0, 0), m1 = 1 and P2 = (2, tanh 2), m2 = 1/ cosh2 2. Again, the picture is defined in mathe- matically convenient coordinates, and the lower left corner is assigned the mathematical coordinates (−3, −2) (black disk).
5.3 The PGF and TikZ Graphics Packages
Today every LATEX output generation system can create nice vector graphics, it’s just the interfaces that are rather diverse. The pgf package provides an abstraction layer over these interface. The pgf package comes with a large manual/tutorial of its own [17]. So we are only going to scratch the surface of the package with this little section.
The pgf package comes with a high level access language provided by the tikz package. TikZ provides highly efficient commands to draw graphics right from inside your document. Use the tikzpicture environment to wrap your TikZ commands.
As mentioned above, there is an excellent manual for pgf and friends. So instead of actually explaining how it works, I will just show you a few examples so that you can get a first impression of how this tool works.
First a simple nonsense diagram.
β = v/c = tanh χ 6

t

100 Producing Mathematical Graphics
\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2)
rectangle (1.8,1.2);
\draw[step=.25cm,gray,very thin]
(-1.4,-1.4) grid (3.4,3.4);
\draw (-1.5,0) — (2.5,0);
\draw (0,-1.5) — (0,1.5);
\draw (0,0) circle (1cm);
\filldraw[fill=green!20!white,
draw=green!50!black]
(0,0) — (3mm,0mm)
arc (0:30:3mm) — cycle;
\end{tikzpicture}
Note the semicolon (;) character. It separates the individual commands. A simple Venn diagram.
\begin{tikzpicture}
\node[circle,draw,
minimum size=3cm,
label=120:{economics}]
at (0,0) {};
\node[circle,draw,
minimum size=3cm,
label=60:{psychology}]
at (1,0) {};
\node (i) at (0.5,-1) {};
\node at (0.6,-2.5)
{behavioral economics}
edge[->,thick,
out=60,in=-60] (i);
\end{tikzpicture}
Note the foreach loops in the next example.
economics
psychology
behavioral economics

5.3 The PGF and TikZ Graphics Packages 101
\begin{tikzpicture}[scale=0.8]
\tikzstyle{v}=[circle, minimum size=2mm,inner sep=0pt,draw]
\foreach \i in {1,…,8}
\foreach \j in {1,…,3}
\node[v]
(G-\i-\j) at (\i,\j) {};
\foreach \i in {1,…,8}
\foreach \j/\o in {1/2,2/3}
\draw[->]
(G-\i-\j) — (G-\i-\o);
\foreach \i/\n in
{1/2,2/3,3/4,4/5,5/6,6/7,7/8}
\foreach \j/\o in {1/2,2/3} {
\draw[->] (G-\i-\j) — (G-\n-\o);
\draw[->] (G-\n-\j) — (G-\i-\o);
}
\end{tikzpicture}
With the \usetikzlibrary command in the preamble you can enable a wide variety of additional features for drawing special shapes, like this box which is slightly bent.
\usetikzlibrary{%
decorations.pathmorphing}
\begin{tikzpicture}[
decoration={bent,aspect=.3}]
\draw [decorate,fill=lightgray]
(0,0) rectangle (5.5,4);
\node[circle,draw]
(A) at (.5,.5) {A};
\node[circle,draw]
(B) at (5,3.5) {B};
\draw[->,decorate] (A) — (B);
\draw[->,decorate] (B) — (A);
\end{tikzpicture}
A
B

102 Producing Mathematical Graphics
\usetikzlibrary{positioning}
\begin{tikzpicture}[xscale=6,
yscale=8,>=stealth]
\tikzstyle{v}=[circle,
minimum size=1mm,draw,thick]
\node[v] (a) {$1$};
\node[v] (b) [right=of a] {$2$};
\node[v] (c) [below=of a] {$2$};
\node[v] (d) [below=of b] {$1$};
\draw[thick,->]
(a) to node {} (c);
\draw[thick,->]
(a) to node {} (d);
\draw[thick,->]
(b) to node {} (d);
\end{tikzpicture}
You can even draw syntax diagrams that look as if they came straight from a book on Pascal programming. The code is a bit more daunting than the example above, so I will just show you the result. If you have a look at the pgf documentation you will find a detailed tutorial on drawing this exact diagram.
12
21
unsigned integer
. digit
E
+

And there is more, if you have to draw plots of numerical data or func- tions, you should have a closer look at the pgfplot package. It provides everything you need to draw plots. It can even call the external gnuplot command to evaluate actual functions you wrote into the graph.
For more inspiration make sure to visit Kjell Magne Fauske’s excellent
http://www.texample.net/tikz/. it contains an ever expanding store of beautiful graphs and other LATEX code. On TEXample.net you will also find a list of tools to work with PGF/TikZ so that you do not have to write all that code by hand.
unsigned integer

Chapter 6 Customising LATEX
Documents produced with the commands you have learned up to this point will look acceptable to a large audience. While they are not fancy-looking, they obey all the established rules of good typesetting, which will make them easy to read and pleasant to look at.
However, there are situations where LATEX does not provide a command or environment that matches your needs, or the output produced by some existing command may not meet your requirements.
In this chapter, I will try to give some hints on how to teach LATEX new tricks and how to make it produce output that looks different from what is provided by default.
6.1 New Commands, Environments and Packages
You may have noticed that all the commands I introduce in this book are typeset in a box, and that they show up in the index at the end of the book. Instead of directly using the necessary LATEX commands to achieve this, I have created a package in which I defined new commands and environments for this purpose. Now I can simply write:
\begin{lscommand}
\ci{dum}
\end{lscommand}
In this example, I am using both a new environment called
lscommand, which is responsible for drawing the box around the command, and a new command named \ci, which typesets the command name and makes a corresponding entry in the index. Check this out by looking up the
\dum

104
Customising LATEX
\dum command in the index at the back of this book, where you’ll find an entry for \dum, pointing to every page where I mentioned the \dum command. If I ever decide that I do not like having the commands typeset in a box any more, I can simply change the definition of the lscommand environment to create a new look. This is much easier than going through the whole document to hunt down all the places where I have used some generic LATEX
commands to draw a box around some word.
6.1.1 New Commands
To add your own commands, use the
command. Basically, the command requires two arguments: the name of the command you want to create, and the definition of the command. The num argument in square brackets is optional and specifies the number of arguments the new command takes (up to 9 are possible). If missing it defaults to 0, i.e. no argument allowed.
The following two examples should help you to get the idea. The first example defines a new command called \tnss. This is short for “The Not So Short Introduction to LATEX2ε.” Such a command could come in handy if you had to write the title of this book over and over again.
\newcommand{name}[num]{definition}
\newcommand{\tnss}{The not
so Short Introduction to
\LaTeXe}
This is “\tnss” \ldots{}
“\tnss”
The next example illustrates how to define a new command that takes two arguments. The #1 tag gets replaced by the first argument you specify, #2 with the second argument, and so on.
\newcommand{\txsit}[2]
{This is the \emph{#1}
#2 Introduction to \LaTeXe}
% in the document body:
\begin{itemize}
\item \txsit{not so}{short}
\item \txsit{very}{long}
\end{itemize}
LATEX will not allow you to create a new command that would overwrite an existing one. But there is a special command in case you explicitly want this: \renewcommand. It uses the same syntax as the \newcommand command.
This is “The not so Short Introduction to LATEX2ε” … “The not so Short Introduc- tion to LATEX2ε”
• ThisisthenotsoshortIntroduction to LATEX2ε
• This is the very long Introduction to LATEX2ε

6.1 New Commands, Environments and Packages 105
In certain cases you might also want to use the \providecommand com- mand. It works like \newcommand, but if the command is already defined, LATEX2ε will silently ignore it.
There are some points to note about whitespace following LATEX com- mands. See page 5 for more information.
6.1.2 New Environments
Just as with the \newcommand command, there is a command to create your own environments. The \newenvironment command uses the following syntax:
Again \newenvironment can have an optional argument. The material specified in the before argument is processed before the text in the envi- ronment gets processed. The material in the after argument gets processed when the \end{name} command is encountered.
The example below illustrates the usage of the \newenvironment com- mand.
\newenvironment{king}
{\rule{1ex}{1ex}%
\hspace{\stretch{1}}}
{\hspace{\stretch{1}}%
\rule{1ex}{1ex}}
\begin{king}
My humble subjects \ldots
\end{king}
The num argument is used the same way as in the \newcommand com- mand. LATEX makes sure that you do not define an environment that al- ready exists. If you ever want to change an existing command, use the \renewenvironment command. It uses the same syntax as the \newenvironment command.
The commands used in this example will be explained later. For the \rule command see page 119, for \stretch go to page 113, and more in- formation on \hspace can be found on page 113.
6.1.3 Extra Space
When creating a new environment you may easily get bitten by extra spaces creeping in, which can potentially have fatal effects, for example when you want to create a title environment which supresses its own indentation as well as the one on the following paragraph. The \ignorespaces command in the
\newenvironment{name}[num]{before}{after}
My humble subjects …

106
Customising LATEX
begin block of the environment will make it ignore any space after executing the begin block. The end block is a bit more tricky as special processing occurs at the end of an environment. With the \ignorespacesafterend LATEX will issue an \ignorespaces after the special ‘end’ processing has occurred.
\newenvironment{simple}%
{\noindent}%
{\par\noindent}
\begin{simple}
See the space\\to the left.
\end{simple}
Same\\here.
\newenvironment{correct}%
{\noindent\ignorespaces}%
{\par\noindent%
\ignorespacesafterend}
\begin{correct}
No space\\to the left.
\end{correct}
Same\\here.
6.1.4 Command-line LATEX
If you work on a Unix-like OS, you might be using Makefiles to build your LATEX projects. In that connection it might be interesting to produce dif- ferent versions of the same document by calling LATEX with command-line parameters. If you add the following structure to your document:
\usepackage{ifthen}
\ifthenelse{\equal{\blackandwhite}{true}}{
% “black and white” mode; do something..
}{
% “color” mode; do something different..
}
Now call LATEX like this:
latex ‘\newcommand{\blackandwhite}{true}\input{test.tex}’
First the command \blackandwhite gets defined and then the actual file is read with input. By setting \blackandwhite to false the color version of the document would be produced.
See the space to the left.
Same here.
No space to the left.
Same here.

6.2 Fonts and Sizes 107 6.1.5 Your Own Package
If you define a lot of new environments and commands, the preamble of your document will get quite long. In this situation, it is a good idea to create a LATEX package containing all your command and environment def- initions. Use the \usepackage command to make the package available in your document.
% Demo Package by Tobias Oetiker
\ProvidesPackage{demopack}
\newcommand{\tnss}{The not so Short Introduction
to \LaTeXe}
\newcommand{\txsit}[1]{The \emph{#1} Short
Introduction to \LaTeXe}
\newenvironment{king}{\begin{quote}}{\end{quote}}
Figure 6.1: Example Package.
Writing a package basically consists of copying the contents of your doc- ument preamble into a separate file with a name ending in .sty. There is one special command,
for use at the very beginning of your package file. \ProvidesPackage tells LATEX the name of the package and will allow it to issue a sensible error message when you try to include a package twice. Figure 6.1 shows a small example package that contains the commands defined in the examples above.
6.2 Fonts and Sizes
6.2.1 Font Changing Commands
LATEX chooses the appropriate font and font size based on the logical struc- ture of the document (sections, footnotes, …). In some cases, one might like to change fonts and sizes by hand. To do this, use the commands listed in Tables 6.1 and 6.2. The actual size of each font is a design issue and depends on the document class and its options. Table 6.3 shows the absolute point size for these commands as implemented in the standard document classes.
{\small The small and
\textbf{bold} Romans ruled}
{\Large all of great big
\textit{Italy}.}
\ProvidesPackage{package name}
The small and bold Romans ruled all of great big Italy.

108
Customising LATEX
One important feature of LATEX2ε is that the font attributes are inde- pendent. This means that issuing size or even font changing commands, and still keep bold or slant attributes set earlier.
In math mode use the font changing commands to temporarily exit math mode and enter some normal text. If you want to switch to another font for math typesetting you need another special set of commands; refer to Table 6.4.
In connection with the font size commands, curly braces play a significant role. They are used to build groups. Groups limit the scope of most LATEX commands.
He likes large and small let- ters.
He likes {\LARGE large and
{\small small} letters}.
The font size commands also change the line spacing, but only if the paragraph ends within the scope of the font size command. The closing curly brace } should therefore not come too early. Note the position of the
\textrm{…}
\texttt{…}
\textmd{…}
\textup{…}
\textsl{…}
\emph{…}
\tiny
\scriptsize
\footnotesize
\small
\normalsize
\large
Table 6.1: Fonts.
roman \textsf{…}
typewriter
medium \textbf{…}
upright \textit{…} slanted \textsc{…}
emphasized \textnormal{…}
Table 6.2: Font Sizes.
sans serif
bold face
italic
SMALL CAPS document font
tiny font
very small font quite small font small font normal font large font
\Large
\LARGE
\huge \Huge
larger font
very large font
huge largest

6.2 Fonts and Sizes 109
Table 6.3: Absolute Point Sizes in Standard Classes.
size 10pt (default)
\tiny 5pt 6pt \scriptsize 7pt 8pt \footnotesize 8pt 9pt \small 9pt 10pt
12pt option 6pt 8pt 10pt 11pt 12pt 14pt 17pt 20pt 25pt 25pt
\normalsize
\large
\Large
\LARGE
\huge
\Huge
10pt 11pt 12pt 12pt 14pt 14pt 17pt 17pt 20pt 20pt 25pt 25pt
11pt option
\mathrm{…}
\mathbf{…}
\mathsf{…}
\mathtt{…}
\mathit{…}
\mathcal{…}
\mathnormal{…}
Roman Font
Boldface Font
Sans Serif Font
Typewriter Font
Italic Font
Table 6.4: Math Fonts.
CALLIGRAPHIC FONT
Normal Font

110
Customising LATEX
\par command in the next two examples. 1
{\Large Don’t read this!
It is not true.
You can believe me!\par}
{\Large This is not true either.
But remember I am a liar.}\par
Don’t read this! It is not true. You can believe me!
This is not true either. But remember I am a liar.
If you want to activate a size changing command for a whole paragraph of text or even more, you might want to use the environment syntax for font changing commands.
\begin{Large}
This is not true.
But then again, what is these
days \ldots
\end{Large}
This will save you from counting lots of curly braces.
6.2.2 Danger, Will Robinson, Danger
As noted at the beginning of this chapter, it is dangerous to clutter your document with explicit commands like this, because they work in opposition to the basic idea of LATEX, which is to separate the logical and visual markup of your document. This means that if you use the same font changing command in several places in order to typeset a special kind of information, you should use \newcommand to define a “logical wrapper command” for the font changing command.
\newcommand{\oops}[1]{%
\textbf{#1}}
Do not \oops{enter} this room,
it’s occupied by \oops{machines}
of unknown origin and purpose.
This approach has the advantage that you can decide at some later stage that you want to use a visual representation of danger other than \textbf, without having to wade through your document, identifying all the occurrences of \textbf and then figuring out for each one whether it was used for pointing out danger or for some other reason.
1\par is equivalent to a blank line
This is not true. But then again, what is these days …
Do not enter this room, it’s occupied by machines of unknown origin and pur- pose.

6.3 Spacing 111
Please note the difference between telling LATEX to emphasize something and telling it to use a different font. The \emph command is context aware, while the font commands are absolute.
\textit{You can also
\emph{emphasize} text if
it is set in italics,}
\textsf{in a
\emph{sans-serif} font,}
\texttt{or in
\emph{typewriter} style.}
6.2.3 Advice
To conclude this journey into the land of fonts and font sizes, here is a little word of advice:
Remember! The MO RE fonts you use in a document, the more READABLE and beautiful it becomes.
6.3 Spacing 6.3.1 Line Spacing
If you want to use larger inter-line spacing in a document, change its value by putting the
command into the preamble of your document. Use \linespread{1.3} for “one and a half” line spacing, and \linespread{1.6} for “double” line spacing. Normally the lines are not spread, so the default line spread factor is 1.
Note that the effect of the \linespread command is rather drastic and not appropriate for published work. So if you have a good reason for chang-
You can also emphasize text if it is set in italics, in a sans-serif font, or in type- writer style.
\linespread{factor }

112 Customising LATEX
ing the line spacing you might want to use the command:
{\setlength{\baselineskip}%
{1.5\baselineskip}
This paragraph is typeset with
the baseline skip set to 1.5 of
what it was before. Note the par
command at the end of the
paragraph.\par}
This paragraph has a clear
purpose, it shows that after the
curly brace has been closed,
everything is back to normal.
6.3.2 Paragraph Formatting
In LATEX, there are two parameters influencing paragraph layout. By placing a definition like
\setlength{\parindent}{0pt}
\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
in the preamble of the input file, you can change the layout of paragraphs. These two commands increase the space between two paragraphs while set- ting the paragraph indent to zero.
The plus and minus parts of the length above tell TEX that it can compress and expand the inter-paragraph skip by the amount specified, if this is necessary to properly fit the paragraphs onto the page.
In continental Europe, paragraphs are often separated by some space and not indented. But beware, this also has its effect on the table of contents. Its lines get spaced more loosely now as well. To avoid this, you might want to move the two commands from the preamble into your document to some place below the command \tableofcontents or to not use them at all, because you’ll find that most professional books use indenting and not spacing to separate paragraphs.
If you want to indent a paragraph that is not indented, use
at the beginning of the paragraph.2 Obviously, this will only have an effect
2To indent the first paragraph after each section head, use the indentfirst package in the ‘tools’ bundle.
\setlength{\baselineskip}{1.5\baselineskip}
This paragraph is typeset with the base- line skip set to 1.5 of what it was before. Note the par command at the end of the paragraph.
This paragraph has a clear purpose, it shows that after the curly brace has been closed, everything is back to normal.
\indent

6.3 Spacing 113
when \parindent is not set to zero.
To create a non-indented paragraph, use
as the first command of the paragraph. This might come in handy when you start a document with body text and not with a sectioning command.
6.3.3 Horizontal Space
LATEX determines the spaces between words and sentences automatically. To add horizontal space, use:
If such a space should be kept even if it falls at the end or the start of a line, use \hspace* instead of \hspace. The length in the simplest case is just a number plus a unit. The most important units are listed in Table 6.5.
This\hspace{1.5cm}is a space
of 1.5 cm.
The command
generates a special rubber space. It stretches until all the remaining space on a line is filled up. If multiple \hspace{\stretch{n}} commands are issued on the same line, they occupy all available space in proportion of their respective stretch factors.
x\hspace{\stretch{1}}
x\hspace{\stretch{3}}x
When using horizontal space together with text, it may make sense to make the space adjust its size relative to the size of the current font. This can be done by using the text-relative units em and ex:
{\Large{}big\hspace{1em}y}\\
{\tiny{}tin\hspace{1em}y}
\noindent
\hspace{length}
This is a space of 1.5 cm.
\stretch{n}
xxx
big y tin y

114
Customising LATEX
Table 6.5: TEX Units.
mm millimetre ≈ 1/25 inch
cm centimetre = 10 mm
in inch = 25.4 mm
pt point≈1/72inch≈1mm 3
6.3.4
em approx width of an ‘M’ in the current font ex approx height of an ‘x’ in the current font
Vertical Space
The space between paragraphs, sections, subsections, … is determined au- tomatically by LATEX. If necessary, additional vertical space between two paragraphs can be added with the command:
This command should normally be used between two empty lines. If the space should be preserved at the top or at the bottom of a page, use the starred version of the command, \vspace*, instead of \vspace.
The \stretch command, in connection with \pagebreak, can be used to typeset text on the last line of a page, or to centre text vertically on a page.
Some text \ldots
\vspace{\stretch{1}}
This goes onto the last line of the page.\pagebreak
Additional space between two lines of the same paragraph or within a table is specified with the
command.
With \bigskip and \smallskip you can skip a predefined amount of
vertical space without having to worry about exact numbers.
6.4 Page Layout
LATEX2ε allows you to specify the paper size in the \documentclass com- mand. It then automatically picks the right text margins, but sometimes
\vspace{length}
\\[length]

6.4 Page Layout 115
6
4i 5i 6i 2i ??
?
6
6
66
Body 7i
􏰢 9i 􏰢
?Header
Margin Notes
– 􏰢i-
10 3i-
􏰢 8i – ?
􏰢 1i-
6
Footer
?
11
i
1 one inch + \hoffset
3 \oddsidemargin = 22pt
or \evensidemargin 5 \headheight = 12pt 7 \textheight = 595pt 9 \marginparsep = 7pt
11 \footskip = 27pt \hoffset = 0pt
\paperwidth = 597pt
2 one inch + \voffset 4 \topmargin = 22pt
6 \headsep = 19pt
8 \textwidth = 360pt
10 \marginparwidth = 106pt
\marginparpush = 5pt (not shown)
\voffset = 0pt
\paperheight = 845pt
Figure 6.2: Layout parameters for this book. Try the layouts package to print the layout of your own document.

116
Customising LATEX
you may not be happy with the predefined values. Naturally, you can change them. Figure 6.2 shows all the parameters that can be changed. The figure was produced with the layout package from the tools bundle.3
WAIT! …before you launch into a “Let’s make that narrow page a bit wider” frenzy, take a few seconds to think. As with most things in LATEX, there is a good reason for the page layout to be as it is.
Sure, compared to your off-the-shelf MS Word page, it looks awfully narrow. But take a look at your favourite book4 and count the number of characters on a standard text line. You will find that there are no more than about 66 characters on each line. Now do the same on your LATEX page. You will find that there are also about 66 characters per line. Experience shows that the reading gets difficult as soon as there are more characters on a single line. This is because it is difficult for the eyes to move from the end of one line to the start of the next one. This is also why newspapers are typeset in multiple columns.
So if you increase the width of your body text, keep in mind that you are making life difficult for the readers of your paper. But enough of the cautioning, I promised to tell you how you do it …
LATEX provides two commands to change these parameters. They are usually used in the document preamble.
The first command assigns a fixed value to any of the parameters:
The second command adds a length to any of the parameters:
This second command is actually more useful than the \setlength com- mand, because it works relative to the existing settings. To add one cen- timetre to the overall text width, I put the following commands into the document preamble:
\addtolength{\hoffset}{-0.5cm}
\addtolength{\textwidth}{1cm}
In this context, you might want to look at the calc package. It allows you to use arithmetic operations in the argument of \setlength and other places where numeric values are entered into function arguments.
3 pkg/tools
4I mean a real printed book produced by a reputable publisher.
\setlength{parameter }{length}
\addtolength{parameter }{length}

6.5 More Fun With Lengths 117 6.5 More Fun With Lengths
Whenever possible, I avoid using absolute lengths in LATEX documents. I rather try to base things on the width or height of other page elements. For the width of a figure this could be \textwidth in order to make it fill the page.
The following 3 commands allow you to determine the width, height and depth of a text string.
The example below shows a possible application of these commands.
\flushleft
\newenvironment{vardesc}[1]{%
\settowidth{\parindent}{#1:\ }
\makebox[0pt][r]{#1:\ }}{}
\begin{displaymath}
a^2+b^2=c^2
\end{displaymath}
\begin{vardesc}{Where}$a$,
$b$ — are adjacent to the right
angle of a right-angled triangle.
$c$ — is the hypotenuse of
the triangle and feels lonely.
$d$ — finally does not show up
here at all. Isn’t that puzzling?
\end{vardesc}
6.6 Boxes
LATEX builds up its pages by pushing around boxes. At first, each letter is a little box, which is then glued to other letters to form words. These are again glued to other words, but with special glue, which is elastic so that a series of words can be squeezed or stretched as to exactly fill a line on the page.
I admit, this is a very simplistic version of what really happens, but the point is that TEX operates on glue and boxes. Letters are not the only things that can be boxes. You can put virtually everything into a box, including
\settoheight{variable}{text} \settodepth{variable}{text} \settowidth{variable}{text}
a2 + b2 = c2
Where: a, b – are adjacent to the right
angle of a right-angled triangle.
c – is the hypotenuse of the triangle and feels lonely.
d – finally does not show up here at all. Isn’t that puzzling?

118
Customising LATEX
other boxes. Each box will then be handled by LATEX as if it were a single letter.
In earlier chapters you encountered some boxes, although I did not tell you. The tabular environment and the \includegraphics, for example, both produce a box. This means that you can easily arrange two tables or images side by side. You just have to make sure that their combined width is not larger than the textwidth.
You can also pack a paragraph of your choice into a box with either the
command or the
environment. The pos parameter can take one of the letters c, t or b to control the vertical alignment of the box, relative to the baseline of the surrounding text. width takes a length argument specifying the width of the box. The main difference between a minipage and a \parbox is that you cannot use all commands and environments inside a parbox, while almost anything is possible in a minipage.
While \parbox packs up a whole paragraph doing line breaking and everything, there is also a class of boxing commands that operates only on horizontally aligned material. We already know one of them; it’s called \mbox. It simply packs up a series of boxes into another one, and can be used to prevent LATEX from breaking two words. As boxes can be put inside boxes, these horizontal box packers give you ultimate flexibility.
width defines the width of the resulting box as seen from the outside.5 Be- sides the length expressions, you can also use \width, \height, \depth, and \totalheight in the width parameter. They are set from values obtained by measuring the typeset text. The pos parameter takes a one letter value: center, flushleft, flushright, or spread the text to fill the box.
The command \framebox works exactly the same as \makebox, but it draws a box around the text.
The following example shows you some things you could do with the \makebox and \framebox commands.
5This means it can be smaller than the material inside the box. You can even set the width to 0pt so that the text inside the box will be typeset without influencing the surrounding boxes.
\parbox[pos]{width}{text}
\begin{minipage}[pos]{width} text \end{minipage}
\makebox[width][pos]{text}

6.7 Rules
\makebox[\textwidth]{%
c e n t r a l}\par
\makebox[\textwidth][s]{%
s p r e a d}\par
\framebox[1.1\width]{Guess I’m
framed now!} \par
\framebox[0.8\width][r]{Bummer,
I am too wide} \par
\framebox[1cm][l]{never
mind, so am I}
Can you read this?
s
central p r e
119
a d
\raisebox{lift}[extend-above-baseline][extend-below-baseline]{text}
Guess I’m framed now!
Bummer, I am too wide mCiannd,yosou armeadI this?
Now that we control the horizontal, the obvious next step is to go for the vertical.6 No problem for LATEX. The
command lets you define the vertical properties of a box. You can use \width, \height, \depth, and \totalheight in the first three parameters, in order to act upon the size of the box inside the text argument.
\raisebox{0pt}[0pt][0pt]{\Large%
\textbf{Aaaa\raisebox{-0.3ex}{a}%
\raisebox{-0.7ex}{aa}%
\raisebox{-1.2ex}{r}%
\raisebox{-2.2ex}{g}%
\raisebox{-4.5ex}{h}}}
she shouted, but not even the next
one in line noticed that something
terrible had happened to her.
6.7 Rules
A few pages back you may have noticed the command
In normal use it produces a simple black box.
\rule{3mm}{.1pt}%
\rule[-1mm]{5mm}{1cm}%
\rule{3mm}{.1pt}%
\rule[1mm]{1cm}{5mm}%
\rule{3mm}{.1pt}
6Total control is only to be obtained by controlling both the horizontal and the vertical …
never
Aaaaaaar she shouted, but not even the next one in line noticed that
g
something terrible had happened to her.
h
\rule[lift]{width}{height}

120 Customising LATEX
This is useful for drawing vertical and horizontal lines. The line on the title page, for example, has been created with a \rule command.
The End.

Appendix A Installing LATEX
Knuth published the source to TEX back in a time when nobody knew about Open Source and/or Free Software. The License that comes with TEX lets you do whatever you want with the source, but you can only call the result of your work TEX if the program passes a set of tests Knuth has also provided. This has lead to a situation where we have free TEX implementations for almost every Operating System under the sun. This chapter will give some hints on what to install on Linux, macOS and Windows, to get a working TEX setup.
A.1 What to Install
To use LATEX on any computer system, you need several programs.
1. The TEX/LATEX program for processing your LATEX source files into typeset PDF or DVI documents.
2. A text editor for editing your LATEX source files. Some products even let you start the LATEX program from within the editor.
3. A PDF/DVI viewer program for previewing and printing your docu- ments.
4. A program to handle POSTSCRIPT files and images for inclusion into your documents.
For every platforms there are several programs that fit the requirements above. Here we just tell about the ones we know, like and have some expe- rience with.
A.2 Cross Platform Editor
While TEX is available on many different computing platforms, LATEX editors have long been highly platform specific.

122
Installing LATEX
Over the past few years I have come to like Texmaker quite a lot. Apart from being very a useful editor with integrated pdf-preview and syntax high- lighting, it has the advantage of running on Windows, Mac and Unix/Linux equally well. See http://www.xm1math.net/texmaker for further infor- mation. There is also a forked version of Texmaker called TeXstudio on http://texstudio.sourceforge.net/. It also seems well maintained and is also available for all three major platforms.
You will find some platform specific editor suggestions in the OS sections below.
A.3 TEX on macOS A.3.1 TEX Distribution
Just download MacTeX. It is a pre-compiled LATEX distribution for macOS. MacTeX provides a full LATEX installation plus a number of additional tools. Get MacTEX from http://www.tug.org/mactex/.
A.3.2 macOS TEX Editor
If you are not happy with our cross-platform suggestion Texmaker (section A.2).
The most popular open source editor for LATEX on the mac seems to be TEXshop. Get a copy from http://www.uoregon.edu/~koch/texshop. It is also contained in the MacTeX distribution.
Recent TEXLive distributions contain the TEXworks editor http://texworks. org/ which is a multi-platform editor based on the TEXShop design. Since TEXworks uses the Qt toolkit, it is available on any platform supported by
this toolkit (macOS, Windows, Linux).
A.3.3 Treat yourself to PDFView
Use PDFView for viewing PDF files generated by LATEX, it integrates tightly with your LATEX text editor. PDFView is an open-source application, avail- able from the PDFView website on
http://pdfview.sourceforge.net/. After installing, open PDFViews pref- erences dialog and make sure that the automatically reload documents option is enabled and that PDFSync support is set appropriately.
A.4 TEX on Windows A.4.1 Getting TEX
First, get a copy of the excellent MiKTEX distribution from http://www.miktex.org/. It contains all the basic programs and files re-

A.5 TEX on Linux 123
quired to compile LATEX documents. The coolest feature in my eyes, is that MiKTEX will download missing LATEX packages on the fly and install them magically while compiling a document. Alternatively you can also use the TeXlive distribution which exists for Windows, Unix and Mac OS to get your base setup going http://www.tug.org/texlive/.
A.4.2 A LATEX editor
If you are not happy with our cross-platform suggestion Texmaker (section A.2).
TeXnicCenter uses many concepts from the programming-world to pro- vide a nice and efficient LATEX writing environment in Windows. Get your copy from
http://www.texniccenter.org/. TeXnicCenter integrates nicely with MiK- TeX.
Recent TEXLive distributions contain the TEXworks Editor http:// texworks.org/. It supports Unicode and requires at least Windows XP.
A.4.3 Document Preview
You will most likely be using Yap for DVI preview as it gets installed with MikTeX. For PDF you may want to look at Sumatra PDF http://blog. kowalczyk.info/software/sumatrapdf/. I mention Sumatra PDF be- cause it lets you jump from any position in the pdf document back into corresponding position in your source document.
A.4.4 Working with graphics
Working with high quality graphics in LATEX means that you have to use Encapsulated POSTSCRIPT (eps) or PDF as your picture format. The pro- gram that helps you deal with this is called GhostScript. You can get it, together with its own front-end GhostView, from http://www.cs.wisc. edu/~ghost/.
If you deal with bitmap graphics (photos and scanned material), you may want to have a look at the open source Photoshop alternative Gimp, available from http://gimp-win.sourceforge.net/.
A.5 TEX on Linux
If you work with Linux, chances are high that LATEX is already installed on your system, or at least available on the installation source you used to setup. Use your package manager to install the following packages:
• texlive – the base TEX/LATEX setup.

124

• • • • •
Installing LATEX
emacs (with AUCTeX) – an editor that integrates tightly with LATEX through the add-on AUCTeX package.
ghostscript – a POSTSCRIPT preview program.
xpdf and acrobat – a PDF preview program.
imagemagick – a free program for converting bitmap images. gimp – a free Photoshop look-a-like.
inkscape – a free illustrator/corel draw look-a-like.
If
check out Texmaker. See section A.2.
you are looking for a more windows like graphical editing environment,
Most Linux distros insist on splitting up their TEX environments into a large number of optional packages, so if something is missing after your first install, go check again.

Bibliography
[1] Leslie Lamport. LATEX: A Document Preparation System. Addison- Wesley, Reading, Massachusetts, second edition, 1994, ISBN 0-201- 52983-1.
[2] Donald E. Knuth. The TEXbook, Volume A of Computers and Type- setting, Addison-Wesley, Reading, Massachusetts, second edition, 1984, ISBN 0-201-13448-9.
[3] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley. The LATEX Companion, (2nd Edition). Addison-Wesley, Reading, Massachusetts, 2004, ISBN 0-201-36299-6.
[4] Michel Goossens, Sebastian Rahtz and Frank Mittelbach. The LATEX Graphics Companion. Addison-Wesley, Reading, Massachusetts, 1997, ISBN 0-201-85469-4.
[5] Each LATEX installation should provide a so-called LATEX Local Guide, which explains the things that are special to the local system. It should be contained in a file called local.tex. Unfortunately, some lazy sysops do not provide such a document. In this case, go and ask your local LATEX guru for help.
[6] LATEX3 Pro ject Team. LATEX 2ε for authors. Comes with the LATEX 2ε distribution as usrguide.tex.
[7] LATEX3 Project Team. LATEX2ε for Class and Package writers. Comes with the LATEX2ε distribution as clsguide.tex.
[8] LATEX3 Project Team. LATEX 2ε Font selection. Comes with the LATEX 2ε distribution as fntguide.tex.
[9] D. P. Carlisle. Packages in the ‘graphics’ bundle. Comes with the ‘graphics’ bundle as grfguide.tex, available from the same source your LATEX distribution came from.
[10] Rainer Schöpf, Bernd Raichle, Chris Rowley. A New Implementation of LATEX’s verbatim Environments. Comes with the ‘tools’ bundle as

126
[11]
[12]
[13] [14] [15] [16]
[17] [18]
[19]
[20]
[21]
[22]
BIBLIOGRAPHY
verbatim.dtx, available from the same source your LATEX distribution came from.
Vladimir Volovich, Werner Lemberg and LATEX3 Project Team. Cyrillic languages support in LATEX. Comes with the LATEX2ε distribution as cyrguide.tex.
Graham Williams. The TeX Catalogue is a very complete listing of many TEX and LATEX related packages. Available online from CTAN: //help/Catalogue/catalogue.html
Kristoffer H. Rose. XY-pic User’s Guide. Downloadable from CTAN with XY-pic distribution
John D. Hobby. A User’s Manual for METAPOST. Downloadable from http://cm.bell-labs.com/who/hobby/
Alan Hoenig. TEX Unbound. Oxford University Press, 1998, ISBN 0-19-509685-1; 0-19-509686-X (pbk.)
Urs Oswald. Graphics in LATEX2ε, containing some Java source files for generating arbitrary circles and ellipses within the picture en- vironment, and METAPOST – A Tutorial. Both downloadable from http://www.ursoswald.ch
Till Tantau. TikZ&PGF Manual. Download from CTAN://graphics/ pgf/base/doc/generic/pgf/pgfmanual.pdf
François Charette. Polyglossia: A Babel Replacement for X LATEX. Comes with the TEXLive distribution as polyglossia.pdf. (Type texdoc polyglossia on the command line.)
François Charette. An ArabTEX-like interface for typesetting languages in Arabic script with X LATEX. Comes with the TEXLive distribution as arabxetex.pdf. (Type texdoc arabxetex on the command line.)
Will Robertson and Khaled Hosny. The fontspec package. Comes with theTEXLivedistributionasfontspec.pdf.(Typetexdoc fontspecon the command line.)
Apostolos Syropoulos. The xgreek package. Comes with the TEXLive distribution as xgreek.pdf. (Type texdoc xgreek on the command line.)
Vafa Khalighi. The bidi package. Comes with the TEXLive distribution as bidi.pdf. (Type texdoc bidi on the command line.
E
E

BIBLIOGRAPHY 127
[23] Vafa Khalighi. The XePersian package. Comes with the TEXLive distribution as xepersian-doc.pdf. (Type texdoc xepersian on the command line.
[24] Wenchang Sun. The xeCJK package. Comes with the TEXLive distri- bution as xeCJK.pdf. (Type texdoc xecjk on the command line.

Index
Symbols
\!, 59 “, 19 $, 43
\,, 45, 59 -, 20
−, 20 \-, 18 –, 20
—, 20
., space after, 27 …, 22
\:, 59
\;, 59
\@, 27
\[, 44, 45
\\, 17, 32, 33, 35, 114 \\*, 17
\], 44 ~, 27
A
A4 paper, 10 A5 paper, 10 å, 23 abstract, 33 accent, 22 acute, 23
\addtolength, 116 advantages of LATEX, 3 æ, 23
align, 52
\Alpha, 65
American Mathematical Society, 43 amsbsy, 61
amsfonts, 60, 69
amsmath, 43, 49, 50, 58, 59, 61 amssymb, 46, 60, 65
amsthm, 61, 62
\and, 29 apostrophe, 48
\appendix, 28, 29 Arabic, 26 arabxetex, 26
\arccos, 48 \arcsin, 48 \arctan, 48 \arg, 48
array, 57, 58 \arraystretch, 36 arrow symbols, 48
article class, 9 \author, 29, 81
B
B5 paper, 10
babel, 23 \backmatter, 29
backslash, 5 \bar, 48
base font size, 10
beamer, 85, 86, 89 \begin, 31, 90, 98 \Beta, 65 \bibitem, 73
bibliography, 73
bidi, 25
\Big, 50 \big, 50 \Bigg, 50 \bigg, 50 \bigskip, 114

INDEX
binary relations, 49 \binom, 49
binomial coefficient, 49 blackboard bold, 46 block, 87
bm, 61
Bmatrix, 58
bmatrix, 58 \bmod, 49
bold face, 108
bold symbols, 46, 61 \boldmath, 61 \boldsymbol, 61
book class, 9 booktabs, 37 brace
horizontal, 47 bracketing, 50
C
calc, 116 \caption, 40, 41
cases, 58 \cdot, 47 \cdots, 47
center, 32 \chapter, 28 \chaptermark, 77
Chinese, 27
\ci, 103
\circle, 93 \circle*, 93
\cite, 73 \cleardoublepage, 41 \clearpage, 41 \cline, 35
color, 85 coloured text, 11 comma, 21 commands, 5
\!, 59
\,, 45, 59 \-, 18
\:, 59
129
\;, 59
\@, 27
\[, 44, 45
\\, 17, 32, 33, 35, 114 \\*, 17
\], 44
\addtolength, 116 \Alpha, 65
\and, 29
\appendix, 28, 29 \arccos, 48
\arcsin, 48
\arctan, 48
\arg, 48 \arraystretch, 36 \author, 29, 81 \backmatter, 29 \bar, 48
\begin, 31, 90, 98 \Beta, 65
\bibitem, 73
\Big, 50
\big, 50
\Bigg, 50
\bigg, 50
\bigskip, 114
\binom, 49
\bmod, 49
\boldmath, 61 \boldsymbol, 61 \caption, 40, 41 \cdot, 47
\cdots, 47
\chapter, 28 \chaptermark, 77 \ci, 103
\circle, 93 \circle*, 93
\cite, 73 \cleardoublepage, 41 \clearpage, 41 \cline, 35
\cos, 48
\cosh, 48

130
INDEX
\ignorespaces, 105, 106 \ignorespacesafterend, 106 \iiiint, 59
\iiint, 59
\iint, 59
\include, 14 \includegraphics, 38, 118 \includeonly, 14
\indent, 112
\index, 75
\inf, 48
\input, 14
\int, 50
\item, 31
\ker, 48
\label, 30, 41, 44
\LaTeX, 19
\LaTeXe, 19
\ldots, 22, 47
\left, 50
\lefteqn, 53, 55 \leftmark, 76, 77
\lg, 48
\lim, 48
\liminf, 48
\limsup, 48
\line, 92, 97
\linebreak, 17 \linespread, 111 \linethickness, 94, 95, 97 \listoffigures, 40 \listoftables, 40
\ln, 48
\log, 48
\mainmatter, 29, 82 \makebox, 118
\makeindex, 74 \maketitle, 29 \marginparpush, 115 \marginparsep, 115 \marginparwidth, 115 \mathbb, 46
\max, 48
\mbox, 19, 22, 118
\cot, 48
\coth, 48
\csc, 48
\date, 29
\ddots, 47 \DeclareMathOperator, 48 \deg, 48
\depth, 118, 119
\det, 48
\dfrac, 49
\dim, 48
\displaystyle, 60 \documentclass, 9, 13, 18 \dum, 103, 104
\emph, 31, 108, 111 \end, 31, 90 \eqref, 44
\exp, 48
\fbox, 19 \foldera, 97 \folderb, 97 \footnote, 30 \footskip, 115 \frac, 49 \framebox, 118 \frenchspacing, 27 \frontmatter, 29 \fussy, 18
\gcd, 48
\hat, 48
\headheight, 115
\headsep, 115
\height, 118, 119
\hline, 35
\hom, 48
\href, 81
\hspace, 105, 113 \hyphenation, 18 \idotsint, 59 \IEEEeqnarraymulticol, 55 \IEEEmulticol, 57 \IEEEnonumber, 56 \IEEEyesnumber, 57 \IEEEyessubnumber, 57

INDEX
\min, 48
\multicolumn, 36 \multicolumns, 55 \multiput, 91, 94 \negmedspace, 56 \newcommand, 59, 104, 105 \newenvironment, 105 \newline, 17
\newpage, 17 \newsavebox, 96 \newtheorem, 61 \noindent, 113 \nolinebreak, 17 \nonumber, 56 \nopagebreak, 17
\not, 66
\oddsidemargin, 115 \oval, 95, 97 \overbrace, 47 \overleftarrow, 48 \overline, 47 \overrightarrow, 48 \pagebreak, 17
\pageref, 30, 78 \pagestyle, 11 \paperheight, 115 \paperwidth, 115
\par, 110
\paragraph, 28
\parbox, 118
\parindent, 112 \parskip, 112
\part, 28
\partial, 49
\phantom, 60
\pmod, 49
\Pr, 48
\printindex, 75
\prod, 50 \providecommand, 105 \ProvidesPackage, 107 \put, 91–96
\qbezier, 89, 91, 97 \qedhere, 63, 64
131
\qquad, 45, 59
\quad, 45, 56, 59 \raisebox, 119
\ref, 30, 41, 78 \renewcommand, 104 \renewenvironment, 105 \right, 50, 57
\right., 50
\rightmark, 76, 77 \rule, 37, 105, 119, 120 \savebox, 96 \scriptscriptstyle, 60 \scriptstyle, 60
\sec, 48
\section, 28 \sectionmark, 77 \setlength, 90, 112, 116 \settodepth, 117 \settoheight, 117 \settowidth, 117
\sin, 48
\sinh, 48
\slash, 20
\sloppy, 18
\smallskip, 114
\smash, 45
\sqrt, 47
\stackrel, 49
\stretch, 105, 113 \subparagraph, 28 \subsection, 28 \subsectionmark, 77 \substack, 50 \subsubsection, 28 \sum, 50
\sup, 48
\tabcolsep, 36 \tableofcontents, 28 \tag, 44
\tan, 48
\tanh, 48
\TeX, 19 \texorpdfstring, 82 \textbackslash, 5

132
INDEX
\textcelsius, 21 \textdegree, 21 \texteuro, 21 \textheight, 115 \textstyle, 60 \textwidth, 115 \tfrac, 49 \theoremstyle, 61 \thicklines, 92, 95, 97 \thinlines, 95, 97 \thispagestyle, 11 \title, 29
\tnss, 104
\today, 19 \topmargin, 115 \totalheight, 118, 119 \ud, 59
\underbrace, 47 \underline, 31, 47 \unitlength, 90, 92 \usebox, 96
\usepackage, 11, 13, 21, 107 \usetikzlibrary, 101 \vdots, 47
\vec, 48
\vector, 92
\verb, 34 \verbatiminput, 77 \vspace, 114 \widehat, 48 \widetilde, 48 \width, 118, 119
comment, 6
comments, 6 \cos, 48 \cosh, 48 \cot, 48 \coth, 48
cross-references, 30 \csc, 48
csquotes, 24
curly braces, 5, 108
D
dash, 20 \date, 29
dcolumn, 36 \ddots, 47
decimal alignment, 36 \DeclareMathOperator, 48 \deg, 48
degree symbol, 20
delimiters, 50 \depth, 118, 119
description, 31 \det, 48
\dfrac, 49
diagonal dots, 47 \dim, 48
dimensions, 113 display style, 43, 45 displaymath, 44
\displaystyle, 60 doc, 12
document font size, 10 document title, 10
\documentclass, 9, 13, 18 dot, 47
dotless ı and ȷ, 23
dots, 47
three, 47
double line spacing, 111 double sided, 10
\dum, 103, 104
E
eepic, 93 ellipsis, 21 em-dash, 20
\emph, 31, 108, 111
empty, 11
en-dash, 20
Encapsulated POSTSCRIPT, 123
\end, 31, 90 enumerate, 31 environments
Bmatrix, 58

INDEX
IEEEeqnarray, 51, 52, 54 Vmatrix, 58
abstract, 33
align, 52
array, 57, 58
block, 87
bmatrix, 58
cases, 58
center, 32
comment, 6 description, 31 displaymath, 44 enumerate, 31 eqnarray, 53 equation*, 44, 45, 51 equation, 44, 45, 51, 53 figure, 39, 40 flushleft, 32 flushright, 32
frame, 87
itemize, 31 lscommand, 103 matrix, 58
minipage, 118 multline*, 51 multline, 51–53 parbox, 118
picture, 89, 90, 93, 94 pmatrix, 58
proof, 62 quotation, 33 quote, 33
table, 39, 40 tabular, 34, 118 thebibliography, 73 tikzpicture, 99 verbatim, 34, 77 verse, 33
vmatrix, 58 eqnarray, 53
\eqref, 44 equation, 43
LATEX, 44 amsmath, 44
133
multiple, 52 equation, 44, 45, 51, 53 equation*, 44, 45, 51 eurosym, 21
executive paper, 10
\exp, 48 exponent, 46 exscale, 12 extension, 11
.aux, 13 .cls, 13 .dtx, 13 .dvi, 13 .fd, 13 .idx, 13, 75 .ilg, 13 .ind, 13, 75 .ins, 13 .lof, 13 .log, 13 .lot, 13 .sty, 13, 78 .tex, 8, 13 .toc, 13
fancyhdr, 76, 77 \fbox, 19
figure, 39, 40
file types, 11 floating bodies, 39 flushleft, 32 flushright, 32
\foldera, 97 \folderb, 97
font, 107 \footnotesize, 108 \Huge, 108
\huge, 108
\LARGE, 108 \Large, 108 \large, 108 \mathbf, 109 \mathcal, 109
F

134
INDEX
\mathit, 109 \mathnormal, 109 \mathrm, 109 \mathsf, 109 \mathtt, 109 \normalsize, 108 \scriptsize, 108 \small, 108 \textbf, 108 \textit, 108 \textmd, 108 \textnormal, 108 \textrm, 108 \textsc, 108 \textsf, 108 \textsl, 108 \texttt, 108 \textup, 108 \tiny, 108
font encoding, 12 font size, 107, 108 fontenc, 12 fontspec, 23, 84 footer, 11
\footnote, 30 \footnotesize, 108 \footskip, 115 \frac, 49
fraction, 49
frame, 87 \framebox, 118 \frenchspacing, 27 \frontmatter, 29 \fussy, 18
Greek, 25
Greek letters, 46 grouping, 108
H
\hat, 48 header, 11
\headheight, 115 textttheadings, 11
\headsep, 115 Hebrew, 26
\height, 118, 119 \hline, 35
\hom, 48
horizontal brace, 47
dots, 47 line, 47 space, 113
\href, 81 \hspace, 105, 113 \Huge, 108
\huge, 108
hyperref, 25, 79, 82, 85 hypertext, 78
hyphen, 20
hyphenat, 77
\hyphenation, 18
I
\idotsint, 59 IEEEeqnarray, 51, 52, 54
\IEEEeqnarraymulticol, 55 \IEEEmulticol, 57 \IEEEnonumber, 56
IEEEtrantools, 54 \IEEEyesnumber, 57 \IEEEyessubnumber, 57
G
\gcd, 48 geometry, 77 GhostScript, 123 GhostView, 123 Gimp, 123 graphics, 11 graphicx, 37, 85 grave, 23
ifthen, 12
\ignorespaces, 105, 106 \ignorespacesafterend, 106 \iiiint, 59
\iiint, 59
\iint, 59

INDEX
\include, 14 \includegraphics, 38, 118 \includeonly, 14
\indent, 112
indentfirst, 112
index, 74 \index, 75 \inf, 48 \input, 14
input file, 7
inputenc, 12 \int, 50
integral operator, 50 international, 22 italic, 108
\item, 31 itemize, 31
J
Japanese, 27 Jawi, 26
K
kashida, 26
Kashmiri, 26 \ker, 48
Knuth, Donald E., 1 Korean, 27
Kurdish, 26
L
\label, 30, 41, 44 Lamport, Leslie, 2 language, 22
\LARGE, 108 \Large, 108 \large, 108 \LaTeX, 19 LATEX3, 4 \LaTeXe, 19
latexsym, 12 layout, 116 layouts, 115
\ldots, 22, 47 \left, 50
135
left aligned, 32 \lefteqn, 53, 55 \leftmark, 76, 77
legal paper, 10
letter paper, 10 \lg, 48
ligature, 22 \lim, 48 \liminf, 48 \limsup, 48
line
horizontal, 47
\line, 92, 97
line break, 17 line spacing, 111
\linebreak, 17 \linespread, 111 \linethickness, 94, 95, 97 \listoffigures, 40 \listoftables, 40
\ln, 48
\log, 48
long equations, 51 longtable, 36 lscommand, 103
M
MacTeX, 122 \mainmatter, 29, 82 \makebox, 118
makeidx, 12, 74
makeidx package, 74 \makeindex, 74
makeindex program, 74 \maketitle, 29
Malay, 26 \marginparpush, 115 \marginparsep, 115 \marginparwidth, 115
margins, 114 math mode, 45 math spacing, 59
\mathbb, 46 \mathbf, 109

136
INDEX
\mathcal, 109 mathematical
accents, 47 delimiter, 50 functions, 48 minus, 20
mathematics, 43 \mathit, 109 \mathnormal, 109 \mathrm, 109
mathrsfs, 69 \mathsf, 109 \mathtt, 109
matrix, 58
matrix, 58
\max, 48
\mbox, 19, 22, 118
mhchem, 60 microtype, 85 MiKTEX, 122
\min, 48
minimal class, 9 minipage, 118 minus sign, 20 modulo function, 49
\multicolumn, 36 \multicolumns, 55 \multiput, 91, 94
multline, 51–53 multline*, 51
\not, 66 ntheorem, 62
O
\oddsidemargin, 115 œ, 23
one column, 10 option, 9
optional parameters, 5
Ottoman, 26 \oval, 95, 97 \overbrace, 47
overfull hbox, 18 \overleftarrow, 48 \overline, 47 \overrightarrow, 48
P
package, 7, 11, 103 packages
N
\negmedspace, 56 \newcommand, 59, 104, 105 \newenvironment, 105 \newline, 17
\newpage, 17 \newsavebox, 96 \newtheorem, 61 \noindent, 113 \nolinebreak, 17 \nonumber, 56 \nopagebreak, 17 \normalsize, 108
amsbsy, 61
amsfonts, 60, 69
amsmath, 43, 49, 50, 58, 59, 61 amssymb, 46, 60, 65
amsthm, 61, 62
arabxetex, 26
babel, 23
beamer, 85, 86, 89
bidi, 25
bm, 61
booktabs, 37
calc, 116
color, 85
csquotes, 24
dcolumn, 36
doc, 12
eepic, 93
eurosym, 21
exscale, 12
fancyhdr, 76, 77
fontenc, 12
fontspec, 23, 84
geometry, 77
graphicx, 37, 85

INDEX
hyperref, 25, 79, 82, 85 hyphenat, 77 IEEEtrantools, 54 ifthen, 12
indentfirst, 112
inputenc, 12
latexsym, 12
layout, 116
layouts, 115
longtable, 36
makeidx, 12, 74
mathrsfs, 69
mhchem, 60
microtype, 85
ntheorem, 62
pgf, 89, 99, 102
pgfplot, 102
polyglossia, 18, 23, 25, 26 ppower4, 85
prosper, 85 pstricks, 93 showidx, 75 syntonly, 12, 14 textcomp, 21 tikz, 89, 99 verbatim, 6, 77 xeCJK, 27 xepersian, 26 xgreek, 25
page layout, 114 page style, 11 empty, 11
headings, 11
plain, 11 \pagebreak, 17
\pageref, 30, 78 \pagestyle, 11
paper size, 10, 114 \paperheight, 115 \paperwidth, 115 \par, 110
paragraph, 15 \paragraph, 28 parameter, 5
137
\parbox, 118 parbox, 118
\parindent, 112 \parskip, 112 \part, 28 \partial, 49
partial derivative, 49 Pashto, 26
PDF, 78, 83 pdfLATEX, 85 PDFView, 122 period, 21
Persian, 26 pgf, 89, 99, 102 pgfplot, 102
\phantom, 60
picture, 89, 90, 93, 94 piecewise function, 57 placement specifier, 39 plain, 11
pmatrix, 58
\pmod, 49
polyglossia, 18, 23, 25, 26 POSTSCRIPT, 3, 85, 90, 121, 124
Encapsulated, 123 ppower4, 85
\Pr, 48 preamble, 7 prime, 48
\printindex, 75 proc class, 9
\prod, 50
product operator, 50 proof, 62
prosper, 85
\providecommand, 105 \ProvidesPackage, 107
pstricks, 93 \put, 91–96
Q
\qbezier, 89, 91, 97 \qedhere, 63, 64 \qquad, 45, 59

138
INDEX
\quad, 45, 56, 59 quotation, 33 quotation marks, 19 quote, 33
R
\raisebox, 119
\ref, 30, 41, 78 \renewcommand, 104 \renewenvironment, 105
report class, 9
reserved characters, 5 \right, 50, 57
right-aligned, 32 \right., 50 \rightmark, 76, 77
roman, 108
\rule, 37, 105, 119, 120
S
sans serif, 108 \savebox, 96
Scandinavian letters, 23 \scriptscriptstyle, 60 \scriptsize, 108 \scriptstyle, 60
\sec, 48
\section, 28 \sectionmark, 77 \setlength, 90, 112, 116 \settodepth, 117 \settoheight, 117 \settowidth, 117
showidx, 75 \sin, 48
Sindhi, 26
single sided, 10 \sinh, 48
slanted, 108
Small Caps, 108 \smallskip, 114 \smash, 45
space, 4 spacing
math mode, 45 special character, 22
\sqrt, 47
square brackets, 6 square root, 47
\stackrel, 49 \stretch, 105, 113
structure, 7
strut, 37 \subparagraph, 28
subscript, 46 \subsection, 28 \subsectionmark, 77 \substack, 50 \subsubsection, 28 \sum, 50
sum operator, 50 \sup, 48
superscript, 46 syntonly, 12, 14
T
\tabcolsep, 36 table, 34
table, 39, 40
table of contents, 28
\tableofcontents, 28 tabular, 34, 118
\tag, 44 \tan, 48 \tanh, 48 \TeX, 19
TeXnicCenter, 123 \texorpdfstring, 82
text style, 43, 45 \textbackslash, 5 \textbf, 108 \textcelsius, 21
textcomp, 21
Slash, 20 \slash, 20
slides class, 9 \sloppy, 18 \small, 108

INDEX
\textdegree, 21 \texteuro, 21 \textheight, 115 \textit, 108 \textmd, 108 \textnormal, 108 \textrm, 108 \textsc, 108 \textsf, 108 \textsl, 108 \textstyle, 60 \texttt, 108 \textup, 108 \textwidth, 115 \tfrac, 49
The LATEX Project, 2
thebibliography, 73 \theoremstyle, 61 \thicklines, 92, 95, 97 \thinlines, 95, 97 \thispagestyle, 11
tikz, 89, 99 tikzpicture, 99 tilde, 20, 48
tilde ( ~), 27
\tiny, 108 title, 10, 29
\title, 29
\tnss, 104
\today, 19 \topmargin, 115 \totalheight, 118, 119
Turkish, 26 two column, 10
U
\ud, 59 Uighur, 26 umlaut, 23
\underbrace, 47 underfull hbox, 18 \underline, 31, 47
\unitlength, 90, 92 units, 113, 114
139
upright, 108 Urdu, 26 URL link, 20
\usebox, 96
\usepackage, 11, 13, 21, 107 \usetikzlibrary, 101
V
\vdots, 47 \vec, 48 \vector, 92
vectors, 48 \verb, 34
verbatim, 6, 77
verbatim, 34, 77 \verbatiminput, 77
verse, 33 vertical
dots, 47 vertical space, 114 Vmatrix, 58 vmatrix, 58
\vspace, 114
W
whitespace, 4
after commands, 5
at the start of a line, 4
\widehat, 48 \widetilde, 48 \width, 118, 119
Word, 76 WYSIWYG, 2, 3
X
xeCJK, 27 XƎLATEX, 83 xepersian, 26 XƎTEX, 83 xgreek, 25