CS计算机代考程序代写 # BS1033 Lecture 2 Analysis

# BS1033 Lecture 2 Analysis
# Author: Chris Hansman
# Email: chansman@imperial.ac.uk
# Date : 18/01/21

# Installing Packages
#install.packages(“tidyverse”)

# Loading Libraries
library(tidyverse)

#Loading Today’s Data
#Reading Data
modes<-read_csv("modes_experiment.csv") votes<-read_csv("votes_income.csv") #--------------------------------------------------# # Analyzing Candy Experiment #--------------------------------------------------# # Plotting a comparison of means (ugly) ggplot(data=modes, aes(x=D_i, y=y_i)) + geom_bar(stat="summary", fun="mean") # Plotting a comparison of means (a bit prettier) ggplot(data=modes, aes(x=as.factor(D_i), y=y_i)) + geom_bar(stat="summary", fun.y="mean", width=0.5)+ labs(x = "Treatment: Candy or Not", y= "Modes Score")+ ylim(0,5) + ggsave("modes_means.pdf") #Conditional Means: modes %>%
group_by(D_i) %>%
summarize(mean(y_i))

# A T-test
ttest <- t.test(y_i~D_i, data=modes, var.equal=TRUE) ttest #Regressions To Recover Means: ols_modes<-lm(y_i~D_i, data= modes) summary(ols_modes) #--------------------------------------------------# # Analyzing Voting Data #--------------------------------------------------# #Plotting All Data ggplot(data = votes ) + geom_point(aes(x = income, y = repvotes)) + geom_smooth(aes(x = income, y = repvotes), method='lm',formula=y~x) + ggsave("votes_all.pdf") #Plotting Data by Group ggplot(data = votes ) + geom_point(aes(x = income, y = repvotes, color=as.factor(south))) + geom_smooth(aes(x = income, y = repvotes, group=as.factor(south)), method='lm',formula=y~x) + ggsave("votes_bygroup.pdf") #Regressions Overall: ols_votes_all<-lm(repvotes~income, data= votes) summary(ols_votes_all) #Regressions For South: ols_votes_south<-lm(repvotes~income, data=subset(votes,south==1)) summary(ols_votes_south) #Regressions For north: ols_votes_north<-lm(repvotes~income, data=subset(votes,south==0)) summary(ols_votes_north) # The average of the two... (0.2968+0.3835 )/2 #Regressions With Control: ols_votes_control<-lm(repvotes~income+south, data= votes) summary(ols_votes_control)