程序代写代做代考 “””

“””
Minimal character-level LSTM model. Written by Ngoc Quan Pham
Code structure borrowed from the Vanilla RNN model from Andreij Karparthy @karparthy.
BSD License
“””
import numpy as np
from random import uniform
import sys

def sigmoid(x):
return 1 / (1 + np.exp(-x))

def dsigmoid(y):
return y * (1 – y)

def dtanh(x):
return 1 – x * x

# The numerically stable softmax implementation
def softmax(x):
# assuming x shape is [feature_size, batch_size]
e_x = np.exp(x – np.max(x, axis=0))
return e_x / e_x.sum(axis=0)

# data I/O
data = open(‘data/input.txt’, ‘r’).read() # should be simple plain text file
chars = sorted(list(set(data)))
data_size, vocab_size = len(data), len(chars)
print(‘data has %d characters, %d unique.’ % (data_size, vocab_size))
char_to_ix = {ch: i for i, ch in enumerate(chars)}
ix_to_char = {i: ch for i, ch in enumerate(chars)}
std = 0.1

option = sys.argv[1]

# hyperparameters
emb_size = 16
hidden_size = 256 # size of hidden layer of neurons
seq_length = 128 # number of steps to unroll the RNN for
learning_rate = 5e-2
max_updates = 500000
batch_size = 32

concat_size = emb_size + hidden_size

# model parameters
# char embedding parameters
Wex = np.random.randn(emb_size, vocab_size) * std # embedding layer

# LSTM parameters
Wf = np.random.randn(hidden_size, concat_size) * std # forget gate
Wi = np.random.randn(hidden_size, concat_size) * std # input gate
Wo = np.random.randn(hidden_size, concat_size) * std # output gate
Wc = np.random.randn(hidden_size, concat_size) * std # c term

bf = np.zeros((hidden_size, 1)) # forget bias
bi = np.zeros((hidden_size, 1)) # input bias
bo = np.zeros((hidden_size, 1)) # output bias
bc = np.zeros((hidden_size, 1)) # memory bias

# Output layer parameters
Why = np.random.randn(vocab_size, hidden_size) * std # hidden to output
by = np.random.randn(vocab_size, 1) * std # output bias

data_stream = np.asarray([char_to_ix[char] for char in data])
print(data_stream.shape)

bound = (data_stream.shape[0] // (seq_length * batch_size)) * (seq_length * batch_size)
cut_stream = data_stream[:bound]
cut_stream = np.reshape(cut_stream, (batch_size, -1))

def forward(inputs, targets, memory):
“””
inputs,targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
“””
hprev, cprev = memory
xs, wes, hs, ys, ps, cs, zs, ins, c_s, ls = {}, {}, {}, {}, {}, {}, {}, {}, {}, {}
os, fs = {}, {}
hs[-1] = np.copy(hprev)
cs[-1] = np.copy(cprev)

loss = 0
input_length = inputs.shape[0]

# forward pass
for t in range(input_length):
xs[t] = np.zeros((vocab_size, batch_size)) # encode in 1-of-k representation
for b in range(batch_size):
xs[t][inputs[t][b]][b] = 1

# convert word indices to word embeddings
wes[t] = np.dot(Wex, xs[t])

# LSTM cell operation
# first concatenate the input and h to get z
zs[t] = np.row_stack((hs[t – 1], wes[t]))

# compute the forget gate
# f = sigmoid(Wf * z + bf)

# compute the input gate
# i = sigmoid(Wi * z + bi)
# compute the candidate memory
# c_ = tanh(Wc * z + bc)

# new memory: applying forget gate on the previous memory
# and then adding the input gate on the candidate memory
# c_t = f * c_(t-1) + i * c_

# output gate
#o = sigmoid(Wo * z + bo)

# DONE LSTM
# output layer – softmax and cross-entropy loss
# unnormalized log probabilities for next chars
# softmax for probabilities for next chars

# label
ls[t] = np.zeros((vocab_size, batch_size))
for b in range(batch_size):
ls[t][targets[t][b]][b] = 1

# cross-entropy loss
loss_t = np.sum(-np.log(ps[t]) * ls[t])
loss += loss_t
# loss += -np.log(ps[t][targets[t],0])

# activations = ()
memory = (hs[input_length – 1], cs[input_length -1])

return loss, activations, memory

def backward(activations, clipping=True):
xs, wes, hs, ys, ps, cs, zs, ins, c_s, ls, os, fs = activations

# backward pass: compute gradients going backwards
# Here we allocate memory for the gradients
dWex, dWhy = np.zeros_like(Wex), np.zeros_like(Why)
dby = np.zeros_like(by)
dWf, dWi, dWc, dWo = np.zeros_like(Wf), np.zeros_like(Wi), np.zeros_like(Wc), np.zeros_like(Wo)
dbf, dbi, dbc, dbo = np.zeros_like(bf), np.zeros_like(bi), np.zeros_like(bc), np.zeros_like(bo)

dhnext = np.zeros_like(hs[0])
dcnext = np.zeros_like(cs[0])

input_length = len(xs)

# back propagation through time starts here
for t in reversed(range(input_length)):
# computing the gradients here

# clip to mitigate exploding gradients
if clipping:
for dparam in [dWex, dWf, dWi, dWo, dWc, dbf, dbi, dbo, dbc, dWhy, dby]:
np.clip(dparam, -5, 5, out=dparam)

gradients = (dWex, dWf, dWi, dWo, dWc, dbf, dbi, dbo, dbc, dWhy, dby)

return gradients

def sample(memory, seed_ix, n):
“””
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
“””
h, c = memory
x = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in range(n):

# forward pass again, but we do not have to store the activations now

p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())

index = ix
x = np.zeros((vocab_size, 1))
x[index] = 1
ixes.append(index)
return ixes

if option == ‘train’:

n, p = 0, 0
n_updates = 0

# momentum variables for Adagrad
mWex, mWhy = np.zeros_like(Wex), np.zeros_like(Why)
mby = np.zeros_like(by)

mWf, mWi, mWo, mWc = np.zeros_like(Wf), np.zeros_like(Wi), np.zeros_like(Wo), np.zeros_like(Wc)
mbf, mbi, mbo, mbc = np.zeros_like(bf), np.zeros_like(bi), np.zeros_like(bo), np.zeros_like(bc)

smooth_loss = -np.log(1.0 / vocab_size) * seq_length # loss at iteration 0

data_length = cut_stream.shape[1]

while True:
# prepare inputs (we’re sweeping from left to right in steps seq_length long)
if p + seq_length + 1 >= data_length or n == 0:
hprev = np.zeros((hidden_size, batch_size)) # reset RNN memory
cprev = np.zeros((hidden_size, batch_size))
p = 0 # go from start of data

inputs = cut_stream[:, p:p + seq_length].T
targets = cut_stream[:, p + 1:p + 1 + seq_length].T

# sample from the model now and then
if n % 200 == 0:
h_zero = np.zeros((hidden_size, 1)) # reset RNN memory
c_zero = np.zeros((hidden_size, 1))
sample_ix = sample((h_zero, c_zero), inputs[0][0], 2000)
txt = ”.join(ix_to_char[ix] for ix in sample_ix)
print(‘—-\n %s \n—-‘ % (txt,))

# forward seq_length characters through the net and fetch gradient
loss, activations, memory = forward(inputs, targets, (hprev, cprev))
hprev, cprev = memory
gradients = backward(activations)

dWex, dWf, dWi, dWo, dWc, dbf, dbi, dbo, dbc, dWhy, dby = gradients
smooth_loss = smooth_loss * 0.999 + loss/batch_size * 0.001
if n % 20 == 0:
print(‘iter %d, loss: %f’ % (n, smooth_loss)) # print progress

# perform parameter update with Adagrad
for param, dparam, mem in zip([Wf, Wi, Wo, Wc, bf, bi, bo, bc, Wex, Why, by],
[dWf, dWi, dWo, dWc, dbf, dbi, dbo, dbc, dWex, dWhy, dby],
[mWf, mWi, mWo, mWc, mbf, mbi, mbo, mbc, mWex, mWhy, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update

p += seq_length # move data pointer
n += 1 # iteration counter
n_updates += 1
if n_updates >= max_updates:
break

elif option == ‘gradcheck’:

data_length = cut_stream.shape[1]

p = 0
# inputs = [char_to_ix[ch] for ch in data[p:p + seq_length]]
# targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]]
inputs = cut_stream[:, p:p + seq_length].T
targets = cut_stream[:, p + 1:p + 1 + seq_length].T

delta = 0.0001

hprev = np.zeros((hidden_size, batch_size))
cprev = np.zeros((hidden_size, batch_size))

memory = (hprev, cprev)

loss, activations, hprev = forward(inputs, targets, memory)
gradients = backward(activations, clipping=False)
dWex, dWf, dWi, dWo, dWc, dbf, dbi, dbo, dbc, dWhy, dby = gradients

for weight, grad, name in zip([Wf, Wi, Wo, Wc, bf, bi, bo, bc, Wex, Why, by],
[dWf, dWi, dWo, dWc, dbf, dbi, dbo, dbc, dWex, dWhy, dby],
[‘Wf’, ‘Wi’, ‘Wo’, ‘Wc’, ‘bf’, ‘bi’, ‘bo’, ‘bc’, ‘Wex’, ‘Why’, ‘by’]):

str_ = (“Dimensions dont match between weight and gradient %s and %s.” % (weight.shape, grad.shape))
assert (weight.shape == grad.shape), str_

print(name)
countidx = 0
gradnumsum = 0
gradanasum = 0
relerrorsum = 0
erroridx = []

for i in range(weight.size):

# evaluate cost at [x + delta] and [x – delta]
w = weight.flat[i]
weight.flat[i] = w + delta
loss_positive, _, _ = forward(inputs, targets, memory)
weight.flat[i] = w – delta
loss_negative, _, _ = forward(inputs, targets, memory)
weight.flat[i] = w # reset old value for this parameter
# fetch both numerical and analytic gradient
grad_analytic = grad.flat[i]
grad_numerical = (loss_positive – loss_negative) / (2 * delta)
gradnumsum += grad_numerical
gradanasum += grad_analytic
rel_error = abs(grad_analytic – grad_numerical) / abs(grad_numerical + grad_analytic)
if rel_error is None:
rel_error = 0.
relerrorsum += rel_error

if rel_error > 0.001:
print (‘WARNING %f, %f => %e ‘ % (grad_numerical, grad_analytic, rel_error))
countidx += 1
erroridx.append(i)

print(‘For %s found %i bad gradients; with %i total parameters in the vector/matrix!’ % (
name, countidx, weight.size))
print(‘ Average numerical grad: %0.9f \n Average analytical grad: %0.9f \n Average relative grad: %0.9f’ % (
gradnumsum / float(weight.size), gradanasum / float(weight.size), relerrorsum / float(weight.size)))
print(‘ Indizes at which analytical gradient does not match numerical:’, erroridx)