CS计算机代考程序代写 ///////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 – 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the “Software”), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_transform
/// @file glm/gtc/matrix_transform.inl
/// @date 2009-04-29 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

#include “../geometric.hpp”
#include “../trigonometric.hpp”
#include “../matrix.hpp”

namespace glm
{
template
GLM_FUNC_QUALIFIER tmat4x4 translate
(
tmat4x4 const & m,
tvec3 const & v
)
{
tmat4x4 Result(m);
Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 rotate
(
tmat4x4 const & m,
T angle,
tvec3 const & v
)
{
T const a = angle;
T const c = cos(a);
T const s = sin(a);

tvec3 axis(normalize(v));
tvec3 temp((T(1) – c) * axis);

tmat4x4 Rotate(uninitialize);
Rotate[0][0] = c + temp[0] * axis[0];
Rotate[0][1] = 0 + temp[0] * axis[1] + s * axis[2];
Rotate[0][2] = 0 + temp[0] * axis[2] – s * axis[1];

Rotate[1][0] = 0 + temp[1] * axis[0] – s * axis[2];
Rotate[1][1] = c + temp[1] * axis[1];
Rotate[1][2] = 0 + temp[1] * axis[2] + s * axis[0];

Rotate[2][0] = 0 + temp[2] * axis[0] + s * axis[1];
Rotate[2][1] = 0 + temp[2] * axis[1] – s * axis[0];
Rotate[2][2] = c + temp[2] * axis[2];

tmat4x4 Result(uninitialize);
Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
Result[3] = m[3];
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 rotate_slow
(
tmat4x4 const & m,
T angle,
tvec3 const & v
)
{
T const a = angle;
T const c = cos(a);
T const s = sin(a);
tmat4x4 Result;

tvec3 axis = normalize(v);

Result[0][0] = c + (1 – c) * axis.x * axis.x;
Result[0][1] = (1 – c) * axis.x * axis.y + s * axis.z;
Result[0][2] = (1 – c) * axis.x * axis.z – s * axis.y;
Result[0][3] = 0;

Result[1][0] = (1 – c) * axis.y * axis.x – s * axis.z;
Result[1][1] = c + (1 – c) * axis.y * axis.y;
Result[1][2] = (1 – c) * axis.y * axis.z + s * axis.x;
Result[1][3] = 0;

Result[2][0] = (1 – c) * axis.z * axis.x + s * axis.y;
Result[2][1] = (1 – c) * axis.z * axis.y – s * axis.x;
Result[2][2] = c + (1 – c) * axis.z * axis.z;
Result[2][3] = 0;

Result[3] = tvec4(0, 0, 0, 1);
return m * Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 scale
(
tmat4x4 const & m,
tvec3 const & v
)
{
tmat4x4 Result(uninitialize);
Result[0] = m[0] * v[0];
Result[1] = m[1] * v[1];
Result[2] = m[2] * v[2];
Result[3] = m[3];
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 scale_slow
(
tmat4x4 const & m,
tvec3 const & v
)
{
tmat4x4 Result(T(1));
Result[0][0] = v.x;
Result[1][1] = v.y;
Result[2][2] = v.z;
return m * Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 ortho
(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar
)
{
tmat4x4 Result(1);
Result[0][0] = static_cast(2) / (right – left);
Result[1][1] = static_cast(2) / (top – bottom);
Result[2][2] = – static_cast(2) / (zFar – zNear);
Result[3][0] = – (right + left) / (right – left);
Result[3][1] = – (top + bottom) / (top – bottom);
Result[3][2] = – (zFar + zNear) / (zFar – zNear);
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 ortho
(
T left,
T right,
T bottom,
T top
)
{
tmat4x4 Result(1);
Result[0][0] = static_cast(2) / (right – left);
Result[1][1] = static_cast(2) / (top – bottom);
Result[2][2] = – static_cast(1);
Result[3][0] = – (right + left) / (right – left);
Result[3][1] = – (top + bottom) / (top – bottom);
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 frustum
(
T left,
T right,
T bottom,
T top,
T nearVal,
T farVal
)
{
tmat4x4 Result(0);
Result[0][0] = (static_cast(2) * nearVal) / (right – left);
Result[1][1] = (static_cast(2) * nearVal) / (top – bottom);
Result[2][0] = (right + left) / (right – left);
Result[2][1] = (top + bottom) / (top – bottom);
Result[2][2] = -(farVal + nearVal) / (farVal – nearVal);
Result[2][3] = static_cast(-1);
Result[3][2] = -(static_cast(2) * farVal * nearVal) / (farVal – nearVal);
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 perspective
(
T fovy,
T aspect,
T zNear,
T zFar
)
{
assert(abs(aspect – std::numeric_limits::epsilon()) > static_cast(0));

T const tanHalfFovy = tan(fovy / static_cast(2));

tmat4x4 Result(static_cast(0));
Result[0][0] = static_cast(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast(1) / (tanHalfFovy);
Result[2][2] = – (zFar + zNear) / (zFar – zNear);
Result[2][3] = – static_cast(1);
Result[3][2] = – (static_cast(2) * zFar * zNear) / (zFar – zNear);
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 perspectiveFov
(
T fov,
T width,
T height,
T zNear,
T zFar
)
{
assert(width > static_cast(0));
assert(height > static_cast(0));
assert(fov > static_cast(0));

T const rad = fov;
T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?

tmat4x4 Result(static_cast(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = – (zFar + zNear) / (zFar – zNear);
Result[2][3] = – static_cast(1);
Result[3][2] = – (static_cast(2) * zFar * zNear) / (zFar – zNear);
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 infinitePerspective
(
T fovy,
T aspect,
T zNear
)
{
T const range = tan(fovy / T(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;

tmat4x4 Result(T(0));
Result[0][0] = (T(2) * zNear) / (right – left);
Result[1][1] = (T(2) * zNear) / (top – bottom);
Result[2][2] = – T(1);
Result[2][3] = – T(1);
Result[3][2] = – T(2) * zNear;
return Result;
}

// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
template
GLM_FUNC_QUALIFIER tmat4x4 tweakedInfinitePerspective
(
T fovy,
T aspect,
T zNear,
T ep
)
{
T const range = tan(fovy / T(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;

tmat4x4 Result(T(0));
Result[0][0] = (static_cast(2) * zNear) / (right – left);
Result[1][1] = (static_cast(2) * zNear) / (top – bottom);
Result[2][2] = ep – static_cast(1);
Result[2][3] = static_cast(-1);
Result[3][2] = (ep – static_cast(2)) * zNear;
return Result;
}

template
GLM_FUNC_QUALIFIER tmat4x4 tweakedInfinitePerspective
(
T fovy,
T aspect,
T zNear
)
{
return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon());
}

template
GLM_FUNC_QUALIFIER tvec3 project
(
tvec3 const & obj,
tmat4x4 const & model,
tmat4x4 const & proj,
tvec4 const & viewport
)
{
tvec4 tmp = tvec4(obj, T(1));
tmp = model * tmp;
tmp = proj * tmp;

tmp /= tmp.w;
tmp = tmp * T(0.5) + T(0.5);
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);

return tvec3(tmp);
}

template
GLM_FUNC_QUALIFIER tvec3 unProject
(
tvec3 const & win,
tmat4x4 const & model,
tmat4x4 const & proj,
tvec4 const & viewport
)
{
tmat4x4 Inverse = inverse(proj * model);

tvec4 tmp = tvec4(win, T(1));
tmp.x = (tmp.x – T(viewport[0])) / T(viewport[2]);
tmp.y = (tmp.y – T(viewport[1])) / T(viewport[3]);
tmp = tmp * T(2) – T(1);

tvec4 obj = Inverse * tmp;
obj /= obj.w;

return tvec3(obj);
}

template
GLM_FUNC_QUALIFIER tmat4x4 pickMatrix
(
tvec2 const & center,
tvec2 const & delta,
tvec4 const & viewport
)
{
assert(delta.x > T(0) && delta.y > T(0));
tmat4x4 Result(1.0f);

if(!(delta.x > T(0) && delta.y > T(0)))
return Result; // Error

tvec3 Temp(
(T(viewport[2]) – T(2) * (center.x – T(viewport[0]))) / delta.x,
(T(viewport[3]) – T(2) * (center.y – T(viewport[1]))) / delta.y,
T(0));

// Translate and scale the picked region to the entire window
Result = translate(Result, Temp);
return scale(Result, tvec3(T(viewport[2]) / delta.x, T(viewport[3]) / delta.y, T(1)));
}

template
GLM_FUNC_QUALIFIER tmat4x4 lookAt
(
tvec3 const & eye,
tvec3 const & center,
tvec3 const & up
)
{
tvec3 const f(normalize(center – eye));
tvec3 const s(normalize(cross(f, up)));
tvec3 const u(cross(s, f));

tmat4x4 Result(1);
Result[0][0] = s.x;
Result[1][0] = s.y;
Result[2][0] = s.z;
Result[0][1] = u.x;
Result[1][1] = u.y;
Result[2][1] = u.z;
Result[0][2] =-f.x;
Result[1][2] =-f.y;
Result[2][2] =-f.z;
Result[3][0] =-dot(s, eye);
Result[3][1] =-dot(u, eye);
Result[3][2] = dot(f, eye);
return Result;
}
}//namespace glm