CS计算机代考程序代写 ///////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 – 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the “Software”), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_bitfield
/// @file glm/gtc/bitfield.inl
/// @date 2011-10-14 / 2012-01-25
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

namespace glm{
namespace detail
{
template
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);

template
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);

template
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);

template <>
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
{
glm::uint16 REG1(x);
glm::uint16 REG2(y);

REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); return REG1 | (REG2 << 1); } template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);

REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); return REG1 | (REG2 << 1); } template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);

REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); return REG1 | (REG2 << 1); } template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);

REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);

REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);

REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
glm::uint32 REG4(w);

REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
glm::uint64 REG4(w);

REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF); REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF); REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF); REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF); REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F); REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F); REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F); REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F); REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303); REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303); REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303); REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303); REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111); REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111); REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111); REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } }//namespace detail template
GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits)
{
GLM_STATIC_ASSERT(std::numeric_limits::is_integer, “‘mask’ accepts only integer values”);

return Bits >= sizeof(genIUType) * 8 ? ~static_cast(0) : (static_cast(1) << Bits) - static_cast(1);
}

template class vecIUType>
GLM_FUNC_QUALIFIER vecIUType mask(vecIUType const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits::is_integer, “‘mask’ accepts only integer values”);

return detail::functor1::call(mask, v);
}

template
GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits::is_integer, “‘bitfieldRotateRight’ accepts only integer values”);

int const BitSize = static_cast(sizeof(genIType) * 8);
return (In << static_cast(Shift)) | (In >> static_cast(BitSize – Shift));
}

template class vecType>
GLM_FUNC_QUALIFIER vecType bitfieldRotateRight(vecType const & In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits::is_integer, “‘bitfieldRotateRight’ accepts only integer values”);

int const BitSize = static_cast(sizeof(T) * 8);
return (In << static_cast(Shift)) | (In >> static_cast(BitSize – Shift));
}

template
GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits::is_integer, “‘bitfieldRotateLeft’ accepts only integer values”);

int const BitSize = static_cast(sizeof(genIType) * 8);
return (In >> static_cast(Shift)) | (In << static_cast(BitSize – Shift));
}

template class vecType>
GLM_FUNC_QUALIFIER vecType bitfieldRotateLeft(vecType const & In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits::is_integer, “‘bitfieldRotateLeft’ accepts only integer values”);

int const BitSize = static_cast(sizeof(T) * 8);
return (In >> static_cast(Shift)) | (In << static_cast(BitSize – Shift));
}

template
GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount)
{
return Value | static_cast(mask(BitCount) << FirstBit); } template class vecType>
GLM_FUNC_QUALIFIER vecType bitfieldFillOne(vecType const & Value, int FirstBit, int BitCount)
{
return Value | static_cast(mask(BitCount) << FirstBit); } template
GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount)
{
return Value & static_cast(~(mask(BitCount) << FirstBit)); } template class vecType>
GLM_FUNC_QUALIFIER vecType bitfieldFillZero(vecType const & Value, int FirstBit, int BitCount)
{
return Value & static_cast(~(mask(BitCount) << FirstBit)); } GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) { union sign8 { int8 i; uint8 u; } sign_x, sign_y; union sign16 { int16 i; uint16 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) { return detail::bitfieldInterleave(x, y);
}

GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y;

union sign32
{
int32 i;
uint32 u;
} result;

sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
{
return detail::bitfieldInterleave(x, y);
}

GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
{
union sign32
{
int32 i;
uint32 u;
} sign_x, sign_y;

union sign64
{
int64 i;
uint64 u;
} result;

sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
{
return detail::bitfieldInterleave(x, y);
}

GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z;

union sign32
{
int32 i;
uint32 u;
} result;

sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
{
return detail::bitfieldInterleave(x, y, z);
}

GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z;

union sign64
{
int64 i;
uint64 u;
} result;

sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
{
return detail::bitfieldInterleave(x, y, z);
}

GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
{
union sign16
{
int32 i;
uint32 u;
} sign_x, sign_y, sign_z;

union sign64
{
int64 i;
uint64 u;
} result;

sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
{
return detail::bitfieldInterleave(x, y, z);
}

GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z, sign_w;

union sign32
{
int32 i;
uint32 u;
} result;

sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
{
return detail::bitfieldInterleave(x, y, z, w);
}

GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z, sign_w;

union sign64
{
int64 i;
uint64 u;
} result;

sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);

return result.i;
}

GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
{
return detail::bitfieldInterleave(x, y, z, w);
}
}//namespace glm