CS计算机代考程序代写 ///////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 – 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the “Software”), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_fast_exponential
/// @file glm/gtx/fast_exponential.inl
/// @date 2006-01-09 / 2011-06-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////////////////////

namespace glm
{
// fastPow:
template
GLM_FUNC_QUALIFIER genType fastPow(genType x, genType y)
{
return exp(y * log(x));
}

template class vecType>
GLM_FUNC_QUALIFIER vecType fastPow(vecType const & x, vecType const & y)
{
return exp(y * log(x));
}

template
GLM_FUNC_QUALIFIER T fastPow(T x, int y)
{
T f = static_cast(1);
for(int i = 0; i < y; ++i) f *= x; return f; } template class vecType>
GLM_FUNC_QUALIFIER vecType fastPow(vecType const & x, vecType const & y)
{
vecType Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i) Result[i] = fastPow(x[i], y[i]); return Result; } // fastExp // Note: This function provides accurate results only for value between -1 and 1, else avoid it. template
GLM_FUNC_QUALIFIER T fastExp(T x)
{
// This has a better looking and same performance in release mode than the following code. However, in debug mode it’s slower.
// return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f))));
T x2 = x * x;
T x3 = x2 * x;
T x4 = x3 * x;
T x5 = x4 * x;
return T(1) + x + (x2 * T(0.5)) + (x3 * T(0.1666666667)) + (x4 * T(0.041666667)) + (x5 * T(0.008333333333));
}
/* // Try to handle all values of float… but often shower than std::exp, glm::floor and the loop kill the performance
GLM_FUNC_QUALIFIER float fastExp(float x)
{
const float e = 2.718281828f;
const float IntegerPart = floor(x);
const float FloatPart = x – IntegerPart;
float z = 1.f;

for(int i = 0; i < int(IntegerPart); ++i) z *= e; const float x2 = FloatPart * FloatPart; const float x3 = x2 * FloatPart; const float x4 = x3 * FloatPart; const float x5 = x4 * FloatPart; return z * (1.0f + FloatPart + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f)); } // Increase accuracy on number bigger that 1 and smaller than -1 but it's not enough for high and negative numbers GLM_FUNC_QUALIFIER float fastExp(float x) { // This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower. // return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f)))); float x2 = x * x; float x3 = x2 * x; float x4 = x3 * x; float x5 = x4 * x; float x6 = x5 * x; float x7 = x6 * x; float x8 = x7 * x; return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f)+ (x6 * 0.00138888888888f) + (x7 * 0.000198412698f) + (x8 * 0.0000248015873f);; } */ template class vecType>
GLM_FUNC_QUALIFIER vecType fastExp(vecType const & x)
{
return detail::functor1::call(fastExp, x);
}

// fastLog
template
GLM_FUNC_QUALIFIER genType fastLog(genType x)
{
return std::log(x);
}

/* Slower than the VC7.1 function…
GLM_FUNC_QUALIFIER float fastLog(float x)
{
float y1 = (x – 1.0f) / (x + 1.0f);
float y2 = y1 * y1;
return 2.0f * y1 * (1.0f + y2 * (0.3333333333f + y2 * (0.2f + y2 * 0.1428571429f)));
}
*/

template class vecType>
GLM_FUNC_QUALIFIER vecType fastLog(vecType const & x)
{
return detail::functor1::call(fastLog, x);
}

//fastExp2, ln2 = 0.69314718055994530941723212145818f
template
GLM_FUNC_QUALIFIER genType fastExp2(genType x)
{
return fastExp(0.69314718055994530941723212145818f * x);
}

template class vecType>
GLM_FUNC_QUALIFIER vecType fastExp2(vecType const & x)
{
return detail::functor1::call(fastExp2, x);
}

// fastLog2, ln2 = 0.69314718055994530941723212145818f
template
GLM_FUNC_QUALIFIER genType fastLog2(genType x)
{
return fastLog(x) / 0.69314718055994530941723212145818f;
}

template class vecType>
GLM_FUNC_QUALIFIER vecType fastLog2(vecType const & x)
{
return detail::functor1::call(fastLog2, x);
}
}//namespace glm