CS计算机代考程序代写 Excel algorithm ////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////
// An example RDDL description for the well-known SysAdmin problem
// (Guestrin, Koller, Parr, IJCAI-01) with a number of enhancements
// to demonstrate the expressivity of RDDL.
//
// Author: Scott Sanner (ssanner [at] gmail.com)
////////////////////////////////////////////////////////////////////
domain sysadmin {

////////////////////////////////////////////////////////////////////////////
// Define requirements up front (we use real value and enum types and the
// reward is deterministic).
////////////////////////////////////////////////////////////////////////////

requirements = {
continuous, // this domain uses real-valued parameterized variables (pvariables)
multivalued, // this domain uses enumerated pvariables
reward-deterministic, // this domain does not use a stochastic reward
intermediate-nodes, // this domain uses intermediate pvariable nodes
constrained-state, // this domain uses state constraints
partially-observed // this domain uses observation pvariables

// Not used here:
//concurrent // this domain does not permit multiple non-default actions
//integer-valued // this domain does not use integer variables
//cpf-deterministic // this domain uses stochastic conditional probability functions
};

////////////////////////////////////////////////////////////////////////////
// User-defined object and enumeration (multivalued) types.
////////////////////////////////////////////////////////////////////////////

types {
computer : object;
status : {@poor, @good, @excellent}; // An enumeration type
};

////////////////////////////////////////////////////////////////////////////
// Provide name[(parameter types)] followed by type, range, etc…
// note that variable parameters *must* be object types.
////////////////////////////////////////////////////////////////////////////

pvariables {

// There are five distinct sections in an RDDL dynamic influence diagram
// specification:
//
// (1) “Non-Fluent layer” (i.e., all parameterized variables that do not
// change, can be bool, int, real, enumerated… and may not even
// have parameters — used for specifying simple constants).
// (2) “State and Action layer” (i.e., current state and action). Action
// variables are under the control of the user.
// (3) “Intermediate layers” (levels 1,2,3..infinity) (i.e., all ephemeral
// intermediate state variables needed to compute the next state…
// very useful for handling stochastic correlated action effects and
// conflict resolution in concurrent problems; strictly stratified so
// that intermediate variables can only condition on other intermediate
// variables of a lower level or state/action variables).
// (4) The “Next-State layer”, indicated by primed ‘ state variables.
// (5) An optional “Observation layer” for partially observed problems that
// determines stochastic observations from the state and intermediate
// variables.
//
// For states (where the initial state must be specified), constants
// (non-fluents) that must be pre-specified, and action fluents under the
// control of the user, default values are specified to allow a compact
// specification of the value/truth assignment of these fluents.
//
// Following are examples of all above-defined fluent layers…

// A simple parameter-free real constant (non-fluent). ALL CAPS is not
// required but makes evident this is a constant type.
REBOOT-PROB : { non-fluent, real, default = 0.1 };

// A constant (non-fluent) definition.
CONNECTED(computer, computer) : { non-fluent, bool, default = false };

// State fluent: is a given computer running or not?
running(computer) : { state-fluent, bool, default = false };

// Intermediate fluent: are all computers in the current state crashed?
all-computers-crashed : { interm-fluent, bool, level = 1 };

// Intermediate fluent: will encode the percent of computers running.
net-status-real : { interm-fluent, real, level = 1 };

// Intermediate fluent: determines enumerated status from net-status.
net-status-enum : { interm-fluent, status, level = 2 };

// Observational fluent: a noisy observation on net-status-enum of
// user-defined enumerated type status (see type section above).
net-status-enum-obs : { observ-fluent, status };

// A noisy observation of whether a computer is running.
running-obs(computer) : { observ-fluent, bool };

// An action variable — a fluent controlled by the system… actions vars
// need a default value to maintain a compact specification of actions.
reboot(computer) : { action-fluent, bool, default = false };

// NOTE: Multiple actions variables…
//
// What if a domain had multiple actions like load(box,truck) and
// drive(truck,city) in the BoxWorld logistics domain? We would simply
// define multiple boolean action variables with a default value of
// false. Then in the instance description (below), if only one of
// these actions could be executed at a time, we would specify
// max-nondef-actions = 1 (meaning all action variables would be
// false in a state except for one). If we let max-nondef-actions > 1,
// we could allow for concurrent actions (assuming that the cpfs were
// defined appropriately to handle action conflicts).
};

////////////////////////////////////////////////////////////////////////////
// Provide name(variable names) followed by a conditional probability function
// (cpf) definition. All cpf expressions must define a random variable (i.e.,
// a variable with a well-defined probability distribution over assignments).
//
// Note: if the domain is deterministic (which would have to be specified in
// the requirements using “cpf-deterministic” and “reward-deterministic”) then
// this section must instead be named “cdfs” (conditional deterministic
// functions) and no random variables (Bernoulli, Poisson, etc…) can be used.
////////////////////////////////////////////////////////////////////////////

cpfs {

// A computer has a higher chance of running if it is already running and
// all of its network connections are also running. (Note use of ‘ for next
// state variable.) Also note the use of “sum” to count the number of connected
// computers running and the division to normalize by the number of connected
// computers. This shows that random variable parameters can be expressions,
// and even random expressions if you want, e.g., Normal(Normal(mu,sigma1),sigma2).
// To help readability, both brackets [] and parens () can be used for expression
// grouping.

running'(?x) = if (reboot(?x))
then KronDelta(true) // if computer is rebooted then must be running
else if (running(?x)) // otherwise outcome depends on network properties
then Bernoulli(.5 + .5*[sum_{?y : computer} CONNECTED(?y,?x) ^ running(?y)]
/ [sum_{?y : computer} CONNECTED(?y,?x)])
else Bernoulli(REBOOT-PROB);

// CPFs need to be probability distributions (unless the requirements state that
// this is a deterministic domain). For this cpf we don’t require randomness, so
// to obtain a proper probability distribution we exploit the fact that all
// logical expressions in RDDL can be treated as integers (false=0, true=1) and
// we can just use a Kronecker Delta function to concentrate all probability
// mass (1.0) on the argument. (In the continuous case we would use a Dirac Delta
// function instead as below.)

all-computers-crashed = KronDelta( forall_{?y : computer} ~running(?y) );

// Ratio of computers running vs. total number of computers.

net-status-real = DiracDelta([sum_{?x : computer} running(?x)]
/ [sum_{?x : computer} 1]);

// Here we use 1 sample from a Discrete distribution to select an
// enumerated value. The first parameter is the variable type. The
// remaining parameters are the probability assignments to each
// outcome. Note that net-status-real above must be in [0,1] so the
// Discrete parameters here really do sum to 1 as required.
// This requirement would be checked at runtime during simulation.
// Note that this intermediate variable of level=2 references the
// net-status-real intermediate variable of level=1.

net-status-enum = Discrete(status,
@poor : 0.1,
@good : (1.0 – net-status-real) – 0.05,
@excellent : net-status-real – 0.05
);

// Observation variables would only be used in a partially observed problem.
// Following is an observation variable that shows off the switch statement.
// This simply conflates excellent/good -> good in the observation space.

net-status-enum-obs = KronDelta(switch (net-status-enum) {
case @poor : @poor,
case @good : @good,
case @excellent : @good
});

// A noisy observation on the underlying state. Simple, just showing
// that observations can be parameterized by objects in the domain.
// Objects in the domain are assumed to be fully observed (so there is
// no identity uncertainty over objects in the observation space… c1
// in the observation space is the true c1 in the state space).

running-obs(?x) = if (running(?x) ^ (net-status-real > 0.2))
then Bernoulli(.9)
else Bernoulli(.1);
};

// This following is a deterministic reward as defined in the requirements.
// It conditions on both state and action variables: +1 is given for every
// computer running and a cost of -1 is given for every computer rebooted.

reward = [sum_{?c : computer} running(?c)] – [sum_{?c : computer} reboot(?c)];

// In any factored or relational problem, usually not all state configurations
// are legal. This is not a problem if you use a search-based formalism
// starting from an initial state (which inherently exploits reachability),
// but not knowing state constraints can kill your algorithm if you take
// a regression solution to the problem. Hence, RDDL allows the specification
// of user-specified state constraints that can be exploited by planners.
// State constraints are any expression that can be evaluated to true/false
// and are checked at runtime in each state reached during simulation… they
// can be viewed as assertions.

// And what about preconditions? These are just action constraints (see below).

state-action-constraints {
// A simple action constraint saying that a computer cannot be rebooted
// if it is already running… commented out for now to allow random policies
// forall_{?c : computer} (reboot(?c) => ~running(?c));

// Examples of other constraints
forall_{?c : computer} (running(?c) | ~running(?c)); // A tautology
};
}

// Define non-fluents here.
non-fluents ring8 {

domain = sysadmin;

objects {
computer : {c1, c2, c3, c4, c5, c6, c7, c8};
};

// Only need to specify non-default values
non-fluents {
REBOOT-PROB = 0.05;
CONNECTED(c1,c2);
CONNECTED(c2,c3);
CONNECTED(c3,c4);
CONNECTED(c4,c5);
CONNECTED(c5,c6);
CONNECTED(c6,c7);
CONNECTED(c7,c8);
CONNECTED(c8,c1);
};
}

// Specify an actual problem instance (full object specification, initial state,
// and objective).
instance inst_sysadmin_complex {

domain = sysadmin;

non-fluents = ring8;

// If there were any object classes that were not needed in the
// non-fluents definition and were not specified there then they should
// be specified here. For example, if in SysAdmin there were another
// object class for people, since knowing these objects was not needed above
// to specify REBOOT-PROB and CONNECTED, the objects could be defined here.
// This would make more sense in a domain like Elevator control where you
// might want to specify the number of elevators and floors as non-fluents,
// but the number of people might change from instance to instance.

// Commented out, but as an example…
//objects {
// people : { Scott, Sungwook };
//};

// Only need to specify non-default values for initial state, but here we’ll
// show that even default values can be specified, i.e., ~running(c2).
init-state {
running(c1);
~running(c2);
};

// For easy and compact translation to PPDDL, max-nondef-actions should be 1.
// max-nondef-actions > 1 implies that multiple actions can be executed
// concurrently, but care must be taken in the cpf definitions to ensure
// that action conflicts are resolved in a reasonable way.
max-nondef-actions = 1;

// We assume the objective is expected discounted reward over a fixed horizon
// length. Indefinite horizon and average reward objectives are not being
// considered in this first draft.
horizon = 20;
discount = 0.9;
}