CS计算机代考程序代写 flex \begin{thebibliography}{10}

\begin{thebibliography}{10}

\bibitem{dbn}
Thomas Dean and Keiji Kanazawa.
\newblock A model for reasoning about persistence and causation.
\newblock {\em Computational Intelligence}, 5(3):142–150, 1989.

\bibitem{influence_diagrams}
Ronald~A. Howard and James~E. Matheson.
\newblock Influence diagrams.
\newblock In Ronald~A. Howard and James~E. Matheson, editors, {\em Readings on
the Principles and Applications of Decision Analysis}. Strategic Decision
Group, Menlo Park, CA, 1984.

\bibitem{pddl_family}
Malte Helmert.
\newblock {PDDL} resources:
\url{http://ipc.informatik.uni-freiburg.de/PddlResources}, 2009.

\bibitem{ppddl}
Hakan Younes and Michael Littman.
\newblock {PPDDL}: {T}he probabilistic planning domain definition language:
\url{http://www.cs.cmu.edu/~lorens/papers/ppddl.pdf}, 2004.

\bibitem{ctm}
Carlos Daganzo.
\newblock The cell transmission model: Network traffic.
\newblock Institute of transportation studies, research reports, working
papers, proceedings, Institute of Transportation Studies, UC Berkeley, 1994.

\bibitem{pgraphplan}
Avrim Blum and John Langford.
\newblock Probabilistic planning in the graphplan framework.
\newblock In {\em 5th European Conference on Planning ({ECP})}, pages 319–332,
London, UK, 2000.

\bibitem{pddl21}
Maria Fox and Derek Long.
\newblock {PDDL2.1}: An extension to {PDDL} for expressing temporal planning
domains.
\newblock {\em Journal of Artificial Intelligence Research}, 20(1):61–124,
2003.

\bibitem{paragraph}
Iain Little and Sylvie Thiebaux.
\newblock Concurrent probabilistic planning in the graphplan framework.
\newblock In {\em ICAPS}, pages 263–273. AAAI, 2006.

\bibitem{stochastic_programs}
D.~Koller, D.~McAllester, and A.~Pfeffer.
\newblock Effective {B}ayesian inference for stochastic programs.
\newblock In {\em Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI)}, pages 740–747, 1997.

\bibitem{spudd}
Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier.
\newblock {SPUDD}: Stochastic planning using decision diagrams.
\newblock In {\em Uncertainty in Artificial Intelligence ({UAI-99})}, pages
279–288, Stockholm, 1999.

\bibitem{pascal_thesis}
Pascal Poupart.
\newblock {\em Exploiting Structure to Efficiently Solve Large Scale Partially
Observable Markov Decision Processes}.
\newblock PhD thesis, Department of Computer Science, University of Toronto,
Toronto, Canada, 2005.

\bibitem{sym_perseus_code}
Pascal Poupart.
\newblock Symbolic perseus code repository, 2005.

\bibitem{fopi03}
David Poole.
\newblock First-order probabilistic inference.
\newblock In {\em IJCAI}, pages 985–991, 2003.

\bibitem{fomdp}
Craig Boutilier, Ray Reiter, and Bob Price.
\newblock Symbolic dynamic programming for first-order {MDPs}.
\newblock In {\em {IJCAI-01}}, pages 690–697, Seattle, 2001.

\bibitem{ffomdp}
Scott Sanner and Craig Boutilier.
\newblock Approximate solution techniques for factored first-order {MDP}s.
\newblock In {\em Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling ({ICAPS} 07)}, 2007.

\bibitem{fo_pomdp}
Scott Sanner and Kristian Kersting.
\newblock Symbolic dynamic programming for first-order po{MDP}s.
\newblock In {\em In Proceedings of the 24th AAAI Conference on Artificial
Intelligence ({AAAI-10})}, Atlanta, Georgia, July 19-23 2010. AAAI Press.

\bibitem{pddl12}
Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins.
\newblock {PDDL} — the planning domain definition language — version 1.2.
\newblock Technical report, Yale Center for Computational Vision and Control,
October 1998.

\bibitem{pddl22}
Stefan Edelkamp and J\”{o}rg Hoffmann.
\newblock {PDDL2.2}: The language for the classical part of {IPC}-4.
\newblock Technical report, Albert-Ludwigs-Universität Freiburg, Institut für
Informatik, January 2004.

\bibitem{pddl3}
Alfonso Gerevini and Derek Long.
\newblock Plan constraints and preferences in {PDDL}3.
\newblock Technical report, Dipartimento di Elettronica per l’Automazione,
Università degli Studi di Brescia, August 2005.

\bibitem{sutton_options}
Richard~S. Sutton, Doina Precup, and Satinder~P. Singh.
\newblock Between mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning.
\newblock {\em Artificial Intelligence}, 112(1-2):181–211, 1999.

\bibitem{gdl}
Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth.
\newblock General game playing: {Game Description Language} specification.
\newblock Technical report, Stanford University Logic Group, March 2008.

\bibitem{functional_strips}
Héctor Geffner.
\newblock Functional strips: A more flexible language for planning and problem
solving.
\newblock In Jack Minker, editor, {\em Logic-based Artificial Intelligence},
pages 188–209. Kluwer, 2000.

\bibitem{rddlsim}
Scott Sanner and Sungwook Yoon.
\newblock rddlsim {RDDL} simulator: \url{http://code.google.com/p/rddlsim/},
2010.

\bibitem{game_of_life}
M.~Gardner.
\newblock Column: Mathematical games.
\newblock {\em Scientific American}, October 1970.

\end{thebibliography}