CS计算机代考程序代写 Hive ////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////
// Reconnaissance domain (contains elements of Rock Sample / Mars Rover domains)
//
// Author: Tom Walsh (thomasjwalsh [at] gmail.com)
//
// In the reconnaissance MDP, there is a 2d grid with an agent,
// a base, some hazard squares, and objects in different locations.
// The agent is equipped with 3 tools, one for detecting water, one for detecting
// life, and one for taking a picture. The agent’s movements are deterministic
// but the probability of getting a good reading from the life and water sensors
// are stochastic. Plus, running into a hazard OR being an adjacent square to one,
// has a probability of damaging each sensor, which causes their false negative
// rate to increase dramatically. If the agent returns to the base it can repair
// each tool individually.
//
// In the MDP version, when tools report a negative result, they contaminate the
// object they were used on. With the water tool, one negative result
// means water will never be detected on that object, and 2 negative
// results from the life detector similarly contaminates an object.
// Hence, there is a strong reason not to use damaged tools. Positive reward is
// given for taking pictures of objects where life was detected and negative
// reward is given for pictures where life has not been detected.
//
// The major planning decisions in this domain are:
// 1) Choosing which objects to try the tools on.
// 2) Whether or not to repair the tools.
// 3) Whether or not to risk damage to the tools by moving through hazards.
//
// This domain contains elements of the Rock Sample and Mars Rover domains:
//
// * Mars Rover reference:
//
// John L. Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramkrishnan,
// David E. Smith, Richard Washington: Planning under Continuous Time and
// Resource Uncertainty: A Challenge for AI. UAI 2002: 77-84.
// http://ti.arc.nasa.gov/static/asanicms/pub-archive/archive/2002-0339.pdf
//
// * Rock Sample reference:
//
// Trey Smith and Reid G. Simmons: Heuristic Search Value Iteration for
// POMDPs. UAI 2004. http://www.cs.cmu.edu/~trey/papers/smith04_hsvi.pdf
//
////////////////////////////////////////////////////////////////////

domain recon_mdp {

requirements = {
// constrained-state,
reward-deterministic
};

types {
x_pos : object;
y_pos : object;
obj : object;
agent: object;
tool : object;
};

pvariables {

//connecting up the locations
ADJACENT-UP(y_pos,y_pos) : { non-fluent, bool, default = false };
ADJACENT-DOWN(y_pos,y_pos) : { non-fluent, bool, default = false };
ADJACENT-RIGHT(x_pos, x_pos) : { non-fluent, bool, default = false };
ADJACENT-LEFT(x_pos,x_pos) : { non-fluent, bool, default = false };

//whether or not an object is at a location
objAt(obj, x_pos, y_pos) : { non-fluent, bool, default = false };

//whether this locaion is a hazard (might damage the tools)
HAZARD(x_pos, y_pos) : { non-fluent, bool, default = false };

//probability of the tool being damaged, and its detection capabilities, without and with damage
DAMAGE_PROB(tool): { non-fluent, real, default = 0.0 };
DETECT_PROB: { non-fluent, real, default = 0.8 };
DETECT_PROB_DAMAGED: { non-fluent, real, default = 0.4 };

//types of tools
CAMERA_TOOL(tool) : { non-fluent, bool, default = false };
LIFE_TOOL(tool) : { non-fluent, bool, default = false };
WATER_TOOL(tool) : { non-fluent, bool, default = false };

//Base where you can repair the tools
BASE(x_pos, y_pos): { non-fluent, bool, default = false };

//weights for the reward function, good pics are one where you detected life, bad pics are where you did not
GOOD_PIC_WEIGHT : { non-fluent, real, default = 1.0 };
BAD_PIC_WEIGHT : { non-fluent, real, default = 2.0 };

damaged(tool) : { state-fluent, bool, default = false };

//after you check for water once, there is the observation you will always get back
//you can think of the test as contaminating the sampled object
waterChecked(obj) : { state-fluent, bool, default = false };
waterDetected(obj) : { state-fluent, bool, default = false };

//rechecking for life might be needed as the test is unreliable
//again, the test is contaminating, but only after the second try
lifeChecked(obj) : { state-fluent, bool, default = false };
lifeChecked2(obj) : { state-fluent, bool, default = false };
lifeDetected(obj) : { state-fluent, bool, default = false };

pictureTaken(obj) : { state-fluent, bool, default = false };
agentAt(agent, x_pos, y_pos) : { state-fluent, bool, default = false };

//actions
up(agent) : {action-fluent, bool, default = false};
down(agent) : {action-fluent, bool, default = false};
left(agent) : {action-fluent, bool, default = false};
right(agent) : {action-fluent, bool, default = false};
useToolOn(agent, tool, obj) : {action-fluent, bool, default = false};
repair(agent, tool) : {action-fluent, bool, default = false};
};

cpfs {

//you can fix damage at the base and tools can be damaged by hazards, even if you are just adjacent to them
//NOTE: if the hazard is in your cell, you are subject to the full damage probability,
// if the hazard is only in an adjacent cell, you are subject to half the full damage probability,
// however, the chance is not cumulative (you are subject to one of {full,half,zero} damage probability)
damaged'(?t) =
if (damaged(?t) ^ ~(exists_{?x : x_pos, ?y : y_pos, ?a: agent} [agentAt(?a, ?x, ?y) ^ BASE(?x, ?y) ^ repair(?a, ?t)]))
then KronDelta( true )
else if (exists_{?x : x_pos, ?y : y_pos, ?a: agent} [agentAt(?a, ?x, ?y) ^ ~BASE(?x, ?y) ^ HAZARD(?x, ?y) ])
then Bernoulli( DAMAGE_PROB(?t) )
else if (exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?x2 :x_pos} [agentAt(?a, ?x, ?y) ^ ~BASE(?x, ?y) ^ HAZARD(?x2, ?y) ^ (ADJACENT-LEFT(?x, ?x2) | ADJACENT-RIGHT(?x, ?x2)) ])
then Bernoulli( DAMAGE_PROB(?t) / 2.0 )
else if (exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?y2 :y_pos} [agentAt(?a, ?x, ?y) ^ ~BASE(?x, ?y) ^ HAZARD(?x, ?y2) ^ (ADJACENT-UP(?y, ?y2) | ADJACENT-DOWN(?y, ?y2)) ])
then Bernoulli( DAMAGE_PROB(?t) / 2.0 )
else
KronDelta( false ); //silly else structure needed because of the way adjacency is encoded

//keeps track of whether you checked for water (which fixes the value, even if you used the damaged tool).
waterChecked'(?o) =
KronDelta( waterChecked(?o)
| exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?t: tool} [agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ^ WATER_TOOL(?t)]);

//first 2 cases are if you have found water and whether it has been checked, the next two are based on the tool being damaged or not
waterDetected'(?o) =
if (waterDetected(?o))
then KronDelta( true )
else if (waterChecked(?o)) // Only one chance to detect water
then KronDelta( false )
else if (exists_{?t : tool, ?x : x_pos, ?y : y_pos, ?a: agent} [WATER_TOOL(?t) ^ damaged(?t) ^ agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o)])
then Bernoulli(DETECT_PROB_DAMAGED)
else if (exists_{?t : tool, ?x : x_pos, ?y : y_pos, ?a: agent} [WATER_TOOL(?t) ^ agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o)])
then Bernoulli(DETECT_PROB)
else
KronDelta( false );

//two lifeChecked variables, only after the second check is the value fixed
lifeChecked'(?o) =
KronDelta(
lifeChecked(?o)
| exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?t: tool} [agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ^ LIFE_TOOL(?t)]);

lifeChecked2′(?o) =
KronDelta(
lifeChecked2(?o)
| lifeChecked(?o) ^ exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?t: tool} [agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ^ LIFE_TOOL(?t)]);

//similar to waterDetected
lifeDetected'(?o) =
if (lifeDetected(?o))
then KronDelta( true )
else if (lifeChecked2(?o) | ~waterDetected(?o)) // Never detect life after 2nd try or if no water
then KronDelta( false )
else if (exists_{?t : tool, ?x : x_pos, ?y : y_pos, ?a: agent} [ LIFE_TOOL(?t) ^ damaged(?t) ^ agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ])
then Bernoulli(DETECT_PROB_DAMAGED)
else if (exists_{?t : tool, ?x : x_pos, ?y : y_pos, ?a: agent} [ LIFE_TOOL(?t) ^ agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ])
then Bernoulli(DETECT_PROB)
else
KronDelta( false );

//inhibits reward for future pictures of this object
pictureTaken'(?o) =
KronDelta( exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?t: tool} [CAMERA_TOOL(?t) ^ agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ^ ~damaged(?t)] );

agentAt'(?a, ?x, ?y) =
KronDelta(
[agentAt(?a, ?x, ?y) ^ ~(up(?a) | down(?a) | right(?a) | left(?a))] |
[left(?a) ^ exists_{?x2 : x_pos} [agentAt(?a, ?x2, ?y) ^ ADJACENT-LEFT(?x2, ?x)]] |
[right(?a) ^ exists_{?x2 : x_pos} [agentAt(?a, ?x2, ?y) ^ ADJACENT-RIGHT(?x2, ?x)]] |
[up(?a) ^ exists_{?y2 : y_pos} [agentAt(?a, ?x, ?y2) ^ ADJACENT-UP(?y2, ?y)]] |
[down(?a) ^ exists_{?y2 : y_pos} [agentAt(?a, ?x, ?y2) ^ ADJACENT-DOWN(?y2, ?y)]] );
};

//we may want to change the way lifeDetected works because right now the same domain has different possible rewards
// Only get rewarded for a good or bad picture the first time the action is *taken*
reward = [sum_{?o : obj}
(GOOD_PIC_WEIGHT *
[ ~pictureTaken(?o) ^ lifeDetected(?o) ^ exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?t: tool} [agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ^ CAMERA_TOOL(?t) ^ ~damaged(?t)]])
] +
[sum_{?o : obj}
-(BAD_PIC_WEIGHT *
[ ~lifeDetected(?o) ^ exists_{?x : x_pos, ?y : y_pos, ?a: agent, ?t: tool} [agentAt(?a, ?x, ?y) ^ objAt(?o, ?x, ?y) ^ useToolOn(?a, ?t, ?o) ^ CAMERA_TOOL(?t)]])
];

// //only 1 of each kind of tool — actually might be more fun if there were multiple of each one
// state-action-constraints {
// (sum_{?t: tool}[WATER_TOOL(?t)]) >= 1;
// (sum_{?t: tool}[CAMERA_TOOL(?t)]) >= 1;
// (sum_{?t: tool}[LIFE_TOOL(?t)]) >= 1;
// };
}