CS计算机代考程序代写 cache data structure concurrency Java decision tree /**

/**
* RDDL: Translates a RDDL Problem to a SPUDD (MDP) / Symbolic Perseus
* (POMDP) language specification.
*
* WARNING: This is the old translator that uses a non-additive form.
* Some domains with large additive rewards simply will not
* translate with this version so use at your own risk.
*
* @author Scott Sanner (ssanner@gmail.com)
* @author Sungwook Yoon (sungwook.yoon@gmail.com)
* @version 10/16/10
*
**/
package rddl.translate;

import java.io.*;
import java.util.*;

import dd.discrete.ADD;
import dd.discrete.DD;

import rddl.*;
import rddl.RDDL.*;
import rddl.parser.*;
import util.*;

public class RDDL2FormatNonAdd {

public final static boolean DEBUG_CPTS = true;
public final static boolean SHOW_GRAPH = false;
public final static boolean SHOW_RELEVANCE = false;

public final static int STATE_ITER = 0;
public final static int OBSERV_ITER = 1;

// For Vanilla SPUDD: need to build ADD with variables for all state vars
// For Concurrent SPUDD: will need to also add in action variables and
// enumerate these
// For Continuous SPUDD: will need RDDL to return an XADD compatible
// decision tree with with state variables evaluated out or
// concurrent encoding with state variables as XADD variables
// Have to go through all states, actions assignments
// Go through all next state vars and capture CPTs
public final static String UNKNOWN = “unknown”.intern();
public final static String SPUDD_ORIG = “spudd_orig”.intern();
public final static String SPUDD_CURR = “spudd_sperseus”.intern();
public final static String SPUDD_CONC = “spudd_concurrent”.intern();
public final static String SPUDD_CONT = “spudd_continuous”.intern();
public final static String SPUDD_CONT_CONC = “spudd_continuous_concurrent”
.intern();
public final static String PPDDL = “ppddl”.intern();

public State _state;
public INSTANCE _i;
public NONFLUENTS _n;
public DOMAIN _d;

public ADD _context;
public ArrayList _alSaveNodes;
public int DD_ZERO;
public int DD_ONE;

public ArrayList _alAllVars;
public ArrayList _alStateVars;
public ArrayList _alNextStateVars;
public ArrayList _alActionVars;
public ArrayList _alObservVars;
public HashMap _hmPrimeRemap;

public TreeMap _var2transDD;
public TreeMap _var2observDD;
public TreeMap _act2rewardDD;

public Integer _reward;
public String _sTranslationType = UNKNOWN;

// Painful introduction just to pass arguments for PPDDL processing
// Sungwook: this is OK for now, but a cleaner way would be to
// use a non-anonymous inner class and pass these arguments
// to the constructor rather than using the current
// anonymous inner class approach which requires these
// static variables. -Scott
public static PrintWriter PW;
public static String S;

// public static double rewardSum;

public RDDL2FormatNonAdd(RDDL rddl, String instance_name,
String translation_type) throws Exception {

_sTranslationType = translation_type.toLowerCase().intern();

_state = new State();

// Set up instance, nonfluent, and domain information
_i = rddl._tmInstanceNodes.get(instance_name);
if (_i == null)
throw new Exception(“Instance ‘” + instance_name
+ “‘ not found, choices are ”
+ rddl._tmInstanceNodes.keySet());

_n = null;
if (_i._sNonFluents != null)
_n = rddl._tmNonFluentNodes.get(_i._sNonFluents);
_d = rddl._tmDomainNodes.get(_i._sDomain);
if (_d == null)
throw new Exception(“Could not get domain ‘” + _i._sDomain
+ “‘ for instance ‘” + instance_name + “‘”);
if (_n != null && !_i._sDomain.equals(_n._sDomain))
throw new Exception(
“Domain name of instance and fluents do not match: ”
+ _i._sDomain + ” vs. ” + _n._sDomain);

// Create the initial state which will setup all the data structures
// in State that we’ll need to produce the DBN
_state.init(_d._hmObjects, _n != null ? _n._hmObjects : null, _i._hmObjects,
_d._hmTypes, _d._hmPVariables, _d._hmCPF, _i._alInitState,
_n == null ? new ArrayList() : _n._alNonFluents, _i._alNonFluents,
_d._alStateConstraints, _d._alActionPreconditions, _d._alStateInvariants,
_d._exprReward, _i._nNonDefActions);

// Build the CPTs
buildCPTs();
}

////////////////////////////////////////////////////////////////////////////
// ////
// Export Methods for a Variety of Formats
////////////////////////////////////////////////////////////////////////////
// ////

// TODO: Export PO-PPDDL (like SPUDD / Symbolic Perseus, first do detect)
public void export(String directory) throws Exception {

String separator = (directory.endsWith(“\\”) || directory.endsWith(“/”)) ? “”
: File.separator;
String filename = directory + separator /*+ _d._sDomainName + “.”*/
+ _i._sName;

if (_sTranslationType == PPDDL) {
if (_var2observDD.size() == 0)
filename = filename + “.ppddl”;
else
filename = filename + “.po-ppddl”;
} else {
if (_var2observDD.size() == 0)
filename = filename + “.spudd”;
else
filename = filename + “.sperseus”;
}
PrintWriter pw = new PrintWriter(new FileWriter(filename));
// PrintWriter pw = new PrintWriter(System.out);

// Strings interned so can test equality here
if (_sTranslationType == SPUDD_ORIG)
exportSPUDD(pw, false, false);
else if (_sTranslationType == SPUDD_CURR)
exportSPUDD(pw, true, false);
else if (_sTranslationType == SPUDD_CONC)
exportSPUDD(pw, false, true);
else if (_sTranslationType == PPDDL)
exportPPDDL(pw);
else
throw new Exception(_sTranslationType + ” not currently supported.”);

pw.close();
System.out.println(“\n>> Exported: ‘” + filename + “‘”);
}

public void exportSPUDD(PrintWriter pw, boolean curr_format,
boolean allow_conc) {
pw
.println(“// Automatically produced by rddl.translate.RDDL2FormatNonAdd”/*
* +
* ” using ‘”
* +
* _sTranslationType
* +
* “‘”
*/);
pw.println(“// SPUDD / Symbolic Perseus Format for ‘” + _d._sDomainName
+ “.” + _i._sName + “‘”);

// State (and action variables)
pw.println(“\n(variables “);
for (String s : _alStateVars)
pw.println(“\t(” + s + ” true false)”);
if (allow_conc)
for (String a : _alActionVars)
pw.println(“\t(” + a + ” true false)”);
pw.println(“)”);

// Observations
if (_alObservVars.size() > 0) {

pw.println(“\n(observations “);
for (String s : _alObservVars)
pw.println(“\t(” + s.substring(0, s.length() – 1)
+ ” true false)”);
pw.println(“)”);
}

// Initial state
HashMap init_state_assign = new HashMap();
for (PVAR_INST_DEF def : _i._alInitState) {
// Get the assignments for this PVAR
init_state_assign.put(CleanFluentName(def._sPredName.toString() + def._alTerms),
(Boolean)def._oValue);
}
pw.println(“\ninit [*”);
for (String s : _alStateVars) {

Boolean bval = init_state_assign.get(s);
if (bval == null) { // No assignment, get default value
// This is a quick fix… a bit ugly
PVAR_NAME p = new PVAR_NAME(s.split(“__”)[0]);
bval = (Boolean)_state.getDefaultValue(p);
}
if (bval)
pw.println(“\t(” + s + ” (true (1.0)) (false (0.0)))”);
else
pw.println(“\t(” + s + ” (true (0.0)) (false (1.0)))”);
}
pw.println(“]”);

// Actions
if (allow_conc) {
exportSPUDDAction(““, curr_format, pw);
} else {
for (String action_name : _alActionVars) {
exportSPUDDAction(action_name, curr_format, pw);
}
}

// Reward
pw.print(“\nreward”);
_context.exportTree(_reward, pw, curr_format, 1);

// Discount and tolerance
pw.println(“\n\ndiscount ” + _i._dDiscount);
pw.println(“horizon ” + _i._nHorizon);
// pw.println(“tolerance 0.00001”);
}

public void exportSPUDDAction(String action_name, boolean curr_format,
PrintWriter pw) {

pw.println(“\naction ”
+ (action_name.equals(““) ? “”
: action_name));
for (String s : _alStateVars) {
pw.print(“\t” + s);

// Build both halves of dual action diagram if curr_format
System.out.println(“Getting: ” + action_name + “, ” + s);
int dd = _var2transDD.get(new Pair(action_name, s));
if (curr_format) {

// System.out.println(“Multiplying…” + dd + “, ” + DD_ONE);
// _context.printNode(dd);
// _context.printNode(DD_ONE);
int dd_true = _context.getVarNode(s + “‘”, 0d, 1d);
dd_true = _context.applyInt(dd_true, dd, ADD.ARITH_PROD);

int dd_false = _context.getVarNode(s + “‘”, 1d, 0d);
// System.out.println(“Multiplying…” + dd + “, ” + DD_ONE);
// _context.printNode(dd);
// _context.printNode(DD_ONE);
int one_minus_dd = _context.applyInt(DD_ONE, dd,
ADD.ARITH_MINUS);
dd_false = _context.applyInt(dd_false, one_minus_dd,
ADD.ARITH_PROD);

// Replace original DD with “dual action diagram” DD
dd = _context.applyInt(dd_true, dd_false, ADD.ARITH_SUM);
}

_context.exportTree(dd, pw, curr_format, 2);
pw.println();
}
if (_alObservVars.size() > 0) {
pw.println(“\tobserve “);
for (String o : _alObservVars) {

Integer dd = _var2observDD.get(new Pair(action_name, o));
if (curr_format) {
// dd = _context.remapGIDsInt(dd, _hmPrimeRemap);

int dd_true = _context.getVarNode(o, 0d, 1d);
dd_true = _context.applyInt(dd_true, dd, ADD.ARITH_PROD);

int dd_false = _context.getVarNode(o, 1d, 0d);
// System.out.println(“Multiplying…” + dd + “, ” +
// DD_ONE);
// _context.printNode(dd);
// _context.printNode(DD_ONE);
int one_minus_dd = _context.applyInt(DD_ONE, dd,
ADD.ARITH_MINUS);
dd_false = _context.applyInt(dd_false, one_minus_dd,
ADD.ARITH_PROD);

// Replace original DD with “dual action diagram” DD
dd = _context.applyInt(dd_true, dd_false, ADD.ARITH_SUM);
}

pw.print(“\t\t” + o.substring(0, o.length() – 1));
_context.exportTree(dd, pw, curr_format, 3);
pw.println();
}
pw.println(“\tendobserve”);
}

// Always show action cost (can be zero)
int reward_dd = _act2rewardDD.get(action_name);
int cost_dd = _context.applyInt(_reward, reward_dd, DD.ARITH_MINUS);
// if (cost_dd != DD_ZERO) { // All functions are canonical
pw.print(“\tcost “);
_context.exportTree(cost_dd, pw, curr_format, 2);
pw.println();
// }

pw.println(“endaction”);
}

public void exportPPDDL(PrintWriter pw) {
// first write domain
pw
.println(“;; Automatically produced by rddl.translate.RDDL2FormatNonAdd”/*
* +
* ” using ‘”
* +
* _sTranslationType
* +
* “‘”
*/);
pw.println(“(define (domain ” + _d._sDomainName + “)”);
// Sungwook: we are using :rewards not :disjunctive-goals.
// pw.println(
// “\t(:requirements :adl :probabilistic-effects :disjunctive-goals)”);
pw.println(“\t(:requirements :adl :probabilistic-effects :rewards)”);
pw.println(“\t(:predicates “);
for (String s : _alStateVars) {
pw.println(“\t\t(” + s + “)”);
}
// pw.println(“\t\t(agoal)”);
pw.println(“\t)”);
if (_alObservVars.size() > 0) {
pw.println(“\t(:observations “);
for (String s : _alObservVars) {
s = s.substring(0, s.length() – 1);
pw.println(“\t\t(” + s + “)”);
}
pw.println(“\t)”);
}
for (String action_name : _alActionVars) {
exportPPDDLAction(action_name, pw);
}
// pw.println(
// “\t(:action achieve-goal :parameters () :precondition () :effect (agoal))”
// );
pw.println(“)”);

// write problem
pw.println(“(define (problem ” + _i._sName + “)”);
pw.println(“\t(:domain ” + _d._sDomainName + “)”);
pw.println(“\t(:init “);

// Initial state
HashMap init_state_assign = new HashMap();
for (PVAR_INST_DEF def : _i._alInitState) {
// Get the assignments for this PVAR
init_state_assign.put(CleanFluentName(def._sPredName.toString() + def._alTerms),
(Boolean)def._oValue);
}
for (String s : _alStateVars) {

Boolean bval = init_state_assign.get(s);
if (bval == null) { // No assignment, get default value
// This is a quick fix… a bit ugly
PVAR_NAME p = new PVAR_NAME(s.split(“__”)[0]);
bval = (Boolean)_state.getDefaultValue(p);
}

if (bval) {
// pw.println(“\t\t(probabilistic 1.0 ” + s + “)”);
pw.println(“\t\t(” + s + “)”);
} else {
// pw.println(“\t\t(probabilistic 0.0 ” + s +”)”);
}
}
pw.println(“\t)”);
pw.println(“\t(:metric maximize (reward))”);
pw.println(“\t;; (:horizon ” + _i._nHorizon + “)”);
pw.println(“\t;; (:discount ” + _i._dDiscount + “)”);
pw.println(“)”);

pw.close();
}

public void exportPPDDLAction(String action_name, PrintWriter pw) {
pw.println(“\t(:action ” + action_name);
// pw.println(“\t\t(:parameters ())”);
// pw.println(“\t\t(:precondition ())”);
pw.println(“\t\t:effect (and “);

PW = pw;
for (String s : _alStateVars) {
S = s;
int dd = _var2transDD.get(new Pair(action_name, s));
_context.enumeratePaths(dd, new ADD.ADDLeafOperation() {
public void processADDLeaf(ArrayList assign,
double leaf_val) {
// Sungwook: I’ve made a few changes to correct and
// simplify the effects produced. -Scott
boolean print_true_effect = (!assign.contains(S) && (leaf_val > 0d));
boolean print_false_effect = (!assign.contains(“~” + S) && (leaf_val < 1d)); if (!print_true_effect && !print_false_effect) return; PW.print("\t\t\t"); boolean use_when = (assign.size() > 0);
if (use_when) {
PW.print(“(when (and “);
for (String a : assign) {
if (_var2observDD.size() != 0) { // DB: No priming
// in POPDDL
boolean not = a.startsWith(“~”);
int beginIndex = (not) ? 1 : 0;
int endIndex = (a.endsWith(“‘”)) ? (a.length() – 1)
: a.length();
String prop = a.substring(beginIndex, endIndex);
if (not) {
PW.print(” (not (” + prop + “))”);
} else {
PW.print(” (” + prop + “)”);
}
} else { // PPDDL
if (a.startsWith(“~”)) {
PW.print(” (not (” + a.substring(1) + “))”);
} else {
PW.print(” (” + a + “)”);
}
}
}
PW.print(“) “);
}

PW.print(“(probabilistic “);
if (print_true_effect)
PW.print(leaf_val + ” (” + S + “) “);
if (print_false_effect)
PW.print((1d – leaf_val) + ” (not ” + “(” + S + “)”
+ “)”);

if (use_when)
PW.println(“))”);
else
PW.println(“)”); // Don’t need to close when
}
});

// This is the action specific reward
// int reward_dd = _act2rewardDD.get(action_name);
}

// Now export the reward for this action
PW = pw;
int reward_dd = _act2rewardDD.get(action_name);
_context.enumeratePaths(reward_dd, new ADD.ADDLeafOperation() {
public void processADDLeaf(ArrayList assign, double leaf_val) {

if (leaf_val == 0d)
return;

PW.print(“\t\t\t”);
boolean use_when = (assign.size() > 0);
if (use_when) {
PW.print(“(when (and “);
for (String a : assign) {
if (a.startsWith(“~”)) {
PW.print(” (not (” + a.substring(1) + “))”);
} else {
PW.print(” (” + a + “)”);
}
}
PW.print(“) “);
}
String operation = leaf_val > 0d ? “increase” : “decrease”;
PW.println(“(” + operation + ” (reward) ” + Math.abs(leaf_val)
+ “))”);
}
});
pw.println(“\t\t)”);

if (_alObservVars.size() > 0) {
pw.println(“\t\t:observation (and “);
for (String s : _alObservVars) {
S = s.substring(0, s.length() – 1);
for (String o : _alObservVars) {
Integer dd = _var2observDD.get(new Pair(action_name, o));
_context.enumeratePaths(dd, new ADD.ADDLeafOperation() {
public void processADDLeaf(ArrayList assign,
double leaf_val) {
// Sungwook: I’ve made a few changes to correct and
// simplify the effects produced. -Scott
boolean print_true_effect = (!assign.contains(S) && (leaf_val > 0d));
boolean print_false_effect = (!assign.contains(“~”
+ S) && (leaf_val < 1d)); if (!print_true_effect && !print_false_effect) return; PW.print("\t\t\t"); boolean use_when = (assign.size() > 0);
if (use_when) {
PW.print(“(when (and “);
for (String a : assign) {
boolean not = a.startsWith(“~”);
int beginIndex = (not) ? 1 : 0;
int endIndex = (a.endsWith(“‘”)) ? (a
.length() – 1) : a.length();
String prop = a.substring(beginIndex,
endIndex);
if (not) {
PW.print(” (not (” + prop + “))”);
} else {
PW.print(” (” + prop + “)”);
}
}
PW.print(“) “);
}

PW.print(“(probabilistic “);
if (print_true_effect)
PW.print(leaf_val + ” (” + S + “) “);
if (print_false_effect)
PW.print((1d – leaf_val) + ” (not ” + “(” + S
+ “)” + “)”);

if (use_when)
PW.println(“))”);
else
PW.println(“)”); // Don’t need to close when
}
});
}
}
pw.println(“\t\t)”);
} // End observations

pw.println(“\t)”);
}

public void buildCPTs() throws Exception {

_var2transDD = new TreeMap();
_var2observDD = new TreeMap();
_act2rewardDD = new TreeMap();

// Verify no intermediate variables
if (_state._tmIntermNames.size() > 0)
throw new Exception(
“Cannot convert to SPUDD format: contains intermediate variables”);

// Should verify that max-nondef-actions is 1 for non-concurrent
// versions.
if (_i._nNonDefActions > 1 && _sTranslationType != SPUDD_CONC
&& _sTranslationType != SPUDD_CONT_CONC)
throw new Exception(
“This domain uses concurrency, but the translation type ‘”
+ _sTranslationType + “‘ does not support it.”);
else if (_i._nNonDefActions == 1
&& (_sTranslationType == SPUDD_CONC || _sTranslationType == SPUDD_CONT_CONC)) {
throw new Exception(
“This domain does not use concurrency, but the translation type ‘”
+ _sTranslationType
+ “‘ is intended for concurrency.”);
}

// Get all variables
HashMap>> state_vars = collectStateVars();
HashMap>> action_vars = collectActionVars();
HashMap>> observ_vars = collectObservationVars();

_alStateVars = new ArrayList();
for (Map.Entry>> e : state_vars
.entrySet()) {
PVAR_NAME p = e.getKey();
ArrayList> assignments = e.getValue();
for (ArrayList assign : assignments) {
String name = CleanFluentName(p.toString() + assign);
_alStateVars.add(name);
}
}
_hmPrimeRemap = new HashMap();
_alNextStateVars = new ArrayList();
for (Map.Entry>> e : state_vars
.entrySet()) {
PVAR_NAME p = e.getKey();
ArrayList> assignments = e.getValue();
for (ArrayList assign : assignments) {
String name = CleanFluentName(p.toString() + assign);
_alNextStateVars.add(name + “‘”);
_hmPrimeRemap.put(name, name + “‘”);
}
}

// Interned so String equality can be tested by equality
// If supporting concurrency then encode actions as variables.
_alActionVars = new ArrayList();
_alActionVars.add(“noop”);
for (Map.Entry>> e : action_vars
.entrySet()) {
PVAR_NAME p = e.getKey();
ArrayList> assignments = e.getValue();
for (ArrayList assign : assignments) {
String name = CleanFluentName(p.toString() + assign);
_alActionVars.add(name);
}
}

_alObservVars = new ArrayList();
for (Map.Entry>> e : observ_vars
.entrySet()) {
PVAR_NAME p = e.getKey();
ArrayList> assignments = e.getValue();
for (ArrayList assign : assignments) {
String name = CleanFluentName(p.toString() + assign);
_alObservVars.add(name + “‘”); // SPUDD uses primed observation
// vars
}
}
_alAllVars = new ArrayList();
_alAllVars.addAll(_alStateVars);
_alAllVars.addAll(_alNextStateVars);
if (_sTranslationType == SPUDD_CONC
|| _sTranslationType == SPUDD_CONT_CONC)
_alAllVars.addAll(_alActionVars);
_alAllVars.addAll(_alObservVars);

// Build the ADD context for the trees
System.out.println(_alAllVars);
_context = new ADD(_alAllVars);
DD_ONE = _context.getConstantNode(1d);
DD_ZERO = _context.getConstantNode(0d);
_alSaveNodes = new ArrayList();
_alSaveNodes.add(DD_ONE);
_alSaveNodes.add(DD_ZERO);

System.out.println(“State vars: ” + state_vars);
System.out.println(“Action vars: ” + action_vars);
System.out.println(“Observ vars: ” + observ_vars);

// For each action, set it to on and others to false and generate all
// CPTs. Assume boolean, using only logical connectives and Bernoulli
// distributions or KronDelta (with deterministic evaluation per state/
// action) at leaves. Expand all sum/prod. Collect all relevant vars.
// Simplify nonfluents to their actual value.

// What is a canonical data structure with random variables???
// Seems to be distributions pushed down as far as possible.
// Easiest if recursive nestings are separated into different
// diagrams, otherwise temporary intermediate variables are needed.

for (int iter = STATE_ITER; iter <= OBSERV_ITER; iter++) { // This loop handles both transition and observation construction HashMap>> src = iter == STATE_ITER ? state_vars
: observ_vars;

for (Map.Entry>> e : src
.entrySet()) {

// Go through all variable names p for a variable type
PVAR_NAME p = e.getKey();
ArrayList> assignments = e.getValue();
// System.out.println(_state._hmCPFs);

CPF_DEF cpf = _state._hmCPFs.get(new PVAR_NAME(p.toString()
+ (iter == STATE_ITER ? “‘” : “”)));

HashMap subs = new HashMap();
for (ArrayList assign : assignments) {

String cpt_var = CleanFluentName(p.toString() + assign);
System.out.println(“Processing: ” + cpt_var);

subs.clear();
for (int i = 0; i < cpf._exprVarName._alTerms.size(); i++) { LVAR v = (LVAR) cpf._exprVarName._alTerms.get(i); LCONST c = (LCONST) assign.get(i); subs.put(v, c); } // This method determines all ground fluents relevant to // the cpf for a variable for the given substitution 'subs' HashSet relevant_vars = new HashSet();
EXPR cpf_expr = cpf._exprEquals;
if (_d._bCPFDeterministic) // collectGFluents expects a
// distribution so convert to a
// Delta function if needed
cpf_expr = new KronDelta(cpf_expr);

cpf_expr.collectGFluents(subs, _state, relevant_vars);
if (SHOW_RELEVANCE)
System.out.println(“Vars relevant to ” + cpt_var + “: ”
+ relevant_vars);

// Filter out action vars if we are not doing a concurrent
// encoding
// with actions as state variables
if (_sTranslationType != SPUDD_CONC
&& _sTranslationType != SPUDD_CONT_CONC)
relevant_vars = filterOutActionVars(relevant_vars);

// Go through all actions and initialize state assignment to
// false
for (Map.Entry>> e2 : action_vars
.entrySet()) {

PVAR_NAME action_name = e2.getKey();
ArrayList> action_assignments = e2
.getValue();

// Go through instances for action_name
for (ArrayList action_assign : action_assignments)
_state.setPVariableAssign(action_name,
action_assign, RDDL.BOOL_CONST_EXPR.FALSE);

}

// Now go through all actions setting each one to be true in
// turn
if (_sTranslationType != SPUDD_CONC
&& _sTranslationType != SPUDD_CONT_CONC) {

// NON-CONCURRENT CASE, EXPLICITLY ENUMERATE ALL
// SINGLETON ACTIONS
// TODO: if concurrent (max-nondef-actions > 1) better
// to enumerate all joint
// actions as a Map (Set Pair vars>)>
// … need a |A|^|max-nondef-actions| enumeration
// method that checks constraints
// … then this method goes through each set one-by-one
// setting it true then
// back to false
for (Map.Entry>> e2 : action_vars
.entrySet()) {

PVAR_NAME action_name = e2.getKey();
ArrayList> action_assignments = e2
.getValue();

// Clear out ADD caches if required
_context.clearSpecialNodes();
for (int n : _alSaveNodes)
_context.addSpecialNode(n);
_context.flushCaches(true);

// Use null as a sign of a NOOP
action_assignments.add(null /*
* new
* ArrayList()
*/); // Add the empty
// list
action_assignments = (ArrayList>) action_assignments
.clone();
for (ArrayList action_assign : action_assignments) {

String action_instance;
if (action_assign != null) {
action_instance = CleanFluentName(action_name
.toString()
+ action_assign);
_state.setPVariableAssign(action_name,
action_assign,
RDDL.BOOL_CONST_EXPR.TRUE);
} else
action_instance = “noop”;

// Build action-specific reward
Integer rew_fun = _act2rewardDD
.get(action_instance);
if (rew_fun == null) {
HashSet rew_relevant_vars = new HashSet();

HashMap empty_sub = new HashMap();
EXPR rew_expr = _state._reward;
if (_d._bRewardDeterministic) // collectGFluents
// expects
// distribution
rew_expr = new DiracDelta(rew_expr);
rew_expr.collectGFluents(empty_sub, _state,
rew_relevant_vars);
rew_relevant_vars = filterOutActionVars(rew_relevant_vars);

if (SHOW_RELEVANCE)
System.out
.println(“Vars relevant to reward: ”
+ rew_relevant_vars);
rew_fun = enumerateAssignments(
new ArrayList(
rew_relevant_vars),
rew_expr, empty_sub, 0);
_act2rewardDD.put(action_instance, rew_fun);
_alSaveNodes.add(rew_fun);
}

// For this action, enumerate all relevant state
// assignments
// and build the CPT. (Could be more efficient
// by recursively
// constructing ADD from RDDL expression, but
// this becomes
// extremely difficult when intermediate
// constructs like
// sum/prod are used in comparisons. This method
// is generic
// and relatively simple.)
if (SHOW_RELEVANCE)
System.out.println(“Vars relevant to ”
+ action_instance + “, ” + cpt_var
+ “: ” + relevant_vars);

int cpt = enumerateAssignments(
new ArrayList(relevant_vars),
cpf_expr, subs, 0);
_alSaveNodes.add(cpt);
if (iter == STATE_ITER)
_var2transDD.put(new Pair(action_instance,
cpt_var), cpt);
else
_var2observDD.put(new Pair(action_instance,
cpt_var + “‘”), cpt);

// Undo so next action can be set
if (action_assign != null)
_state.setPVariableAssign(action_name,
action_assign,
RDDL.BOOL_CONST_EXPR.FALSE);
}
}
} else {
// CONCURRENT CASE, NO NEED TO ENUMERATE ACTIONS
// (IMPLICIT VARS IN CPT)
int cpt = enumerateAssignments(new ArrayList(
relevant_vars), cpf_expr, subs, 0);
_alSaveNodes.add(cpt);
if (iter == STATE_ITER)
_var2transDD.put(new Pair(
“, cpt_var), cpt);
else
_var2observDD.put(new Pair(
“, cpt_var), cpt);
}
}
}
}

// Finally compute function for reward
//
// Get the non-action specific reward — assuming defaults for actions,
// so may be incorrect if rewards are action-specific… in this case
// see _act2rewardDD.
HashSet relevant_vars = new HashSet();
HashMap empty_sub = new HashMap();
EXPR rew_expr = _state._reward;
if (_d._bRewardDeterministic) // collectGFluents expects distribution
rew_expr = new DiracDelta(rew_expr);
rew_expr.collectGFluents(empty_sub, _state, relevant_vars);

if (_sTranslationType != SPUDD_CONC
&& _sTranslationType != SPUDD_CONT_CONC)
relevant_vars = filterOutActionVars(relevant_vars);

System.out.println(“Vars relevant to reward: ” + relevant_vars);
_reward = null;
try {
_reward = enumerateAssignments(new ArrayList(relevant_vars),
rew_expr, empty_sub, 0);
_alSaveNodes.add(_reward);
} catch (Exception e) {
}

// Debug
if (DEBUG_CPTS) {
PrintWriter ps = new PrintWriter(System.out);

int i = 0;
System.out.println();
for (Map.Entry e : _var2transDD.entrySet()) {
if (++i > 3)
break;
System.out.println(“Transition: ” + e); // + ” :: ” +
// _context.printNode
// ((Integer
// )e.getValue()));
// _context.exportTree(e.getValue(), ps, true);
// ps.println(“\n\n”);
ps.flush();
if (SHOW_GRAPH)
_context.getGraph(e.getValue()).launchViewer();
}

i = 0;
System.out.println();
for (Map.Entry e : _var2observDD.entrySet()) {
if (++i > 3)
break;
System.out.println(“Observation: ” + e); // + ” :: ” +
// _context.printNode
// ((Integer)e.
// getValue()));
if (SHOW_GRAPH)
_context.getGraph(e.getValue()).launchViewer();
}

i = 0;
System.out.println();
boolean reward_action_dependent = false;
Integer last_reward = null;
for (Map.Entry e : _act2rewardDD.entrySet()) {
if (++i > 3)
break;
System.out.println(“Action-based reward: ” + e); // + ” :: ” +
// _context
// .printNode
// (
// (Integer)
// e
// .getValue
// ()));
if (SHOW_GRAPH)
_context.getGraph(e.getValue()).launchViewer();

// Check to see if reward is independent of the action
if (last_reward != null) {
reward_action_dependent = reward_action_dependent
|| (!e.getValue().equals(last_reward));
// System.out.println(reward_action_dependent + ” ” +
// e.getValue() + ” != ” + last_reward + “, ” +
// e.getValue().getClass() + “, ” + last_reward.getClass() +
// ” = ” + (!e.getValue().equals(last_reward)));
}
last_reward = e.getValue();
}

// Get the non-action specific reward — assuming defaults for
// actions
System.out.println(“\nGeneral reward = ” + _reward);
if (SHOW_GRAPH)
_context.getGraph(_reward).launchViewer();

if (last_reward != null)
reward_action_dependent = reward_action_dependent
|| (!_reward.equals(last_reward));
// System.out.println(reward_action_dependent);

if (reward_action_dependent)
System.err
.println(“NOTE: Reward is action dependent… verify this is correctly reflected in action cost functions.”);
}
}

private HashSet filterOutActionVars(HashSet relevant_vars) {
HashSet new_vars = new HashSet();
for (Pair p : relevant_vars)
if (_state.getPVariableType((PVAR_NAME) p._o1) != State.ACTION)
new_vars.add(p);
return new_vars;
}

public int enumerateAssignments(ArrayList vars, EXPR cpf_expr,
HashMap subs, int index) throws EvalException {
return enumerateAssignments(vars, cpf_expr, subs, index, _context
.getConstantNode(1d));
}

public int enumerateAssignments(ArrayList vars, EXPR cpf_expr,
HashMap subs, int index, int cpt)
throws EvalException {

// Need to build an assignment ADD on the way down, use it
// at leaf to add to current CPT and return result

// Recurse until index == vars.size
if (index >= vars.size()) {

// At this point, all state and action variables are set
// Just need to get the distribution for the appropriate CPT
RDDL.EXPR e = cpf_expr.getDist(subs, _state);
double prob_true = -1d;
// System.out.println(“RDDL.EXPR: ” + e);
if (e instanceof KronDelta) {
EXPR e2 = ((KronDelta) e)._exprIntValue;
if (e2 instanceof INT_CONST_EXPR)
// Should either be true (1) or false (0)… same as
// prob_true
prob_true = (double) ((INT_CONST_EXPR) e2)._nValue;
else if (e2 instanceof BOOL_CONST_EXPR)
prob_true = ((BOOL_CONST_EXPR) e2)._bValue ? 1d : 0d;
else
throw new EvalException(“Unhandled KronDelta argument: ”
+ e2.getClass());
} else if (e instanceof Bernoulli) {
prob_true = ((REAL_CONST_EXPR) ((Bernoulli) e)._exprProb)._dValue;
} else if (e instanceof DiracDelta) {
// NOTE: this is not a probability, but rather an actual value
// (presumably for the reward). This method is a little
// overloaded… need to consider whether there will be
// any problems arising from this overloading. -Scott
prob_true = ((REAL_CONST_EXPR) ((DiracDelta) e)._exprRealValue)._dValue;
} else
throw new EvalException(“Unhandled distribution type: ”
+ e.getClass());

// Now build CPT for action variables
return _context.scalarMultiply(cpt, prob_true);

} else {
PVAR_NAME p = (PVAR_NAME) vars.get(index)._o1;
ArrayList terms = (ArrayList) vars.get(index)._o2;
String var_name = CleanFluentName(p._sPVarName + terms
+ (p._bPrimed ? “\'” : “”));
// System.out.println(var_name);

// Set to true
_state.setPVariableAssign(p, terms, RDDL.BOOL_CONST_EXPR.TRUE);
int high = _context.getVarNode(var_name, 0d, 1d);
int ret_high = enumerateAssignments(vars, cpf_expr, subs,
index + 1, _context.applyInt(cpt, high, ADD.ARITH_PROD));

// Set to false
_state.setPVariableAssign(p, terms, RDDL.BOOL_CONST_EXPR.FALSE);
int low = _context.getVarNode(var_name, 1d, 0d);
int ret_low = enumerateAssignments(vars, cpf_expr, subs, index + 1,
_context.applyInt(cpt, low, ADD.ARITH_PROD));

// Unassign
_state.setPVariableAssign(p, terms, null);

// Sum both sides of the returned CPT and return it
return _context.applyInt(ret_high, ret_low, ADD.ARITH_SUM);
}
}

public HashMap>> collectStateVars()
throws EvalException {

HashMap>> state_vars = new HashMap>>();

for (PVAR_NAME p : _state._alStateNames) {
ArrayList> gfluents = _state.generateAtoms(p);
state_vars.put(p, gfluents);
}

return state_vars;
}

public HashMap>> collectActionVars()
throws EvalException {

HashMap>> action_vars = new HashMap>>();

for (PVAR_NAME p : _state._alActionNames) {
ArrayList> gfluents = _state.generateAtoms(p);
action_vars.put(p, gfluents);
}

return action_vars;
}

public HashMap>> collectObservationVars()
throws EvalException {

HashMap>> observ_vars = new HashMap>>();

for (PVAR_NAME p : _state._alObservNames) {
ArrayList> gfluents = _state.generateAtoms(p);
observ_vars.put(p, gfluents);
}

return observ_vars;
}

public static String CleanFluentName(String s) {
s = s.replace(“[“, “__”);
s = s.replace(“]”, “”);
s = s.replace(“, “, “_”);
s = s.replace(‘,’, ‘_’);
s = s.replace(‘ ‘, ‘_’);
s = s.replace(‘-‘, ‘_’);
s = s.replace(“()”, “”);
if (s.endsWith(“__”))
s = s.substring(0, s.length() – 2);
return s;
}

////////////////////////////////////////////////////////////////////////////
// ////
// Testing Methods
////////////////////////////////////////////////////////////////////////////
// ////

public static void ShowFileFormats() {
System.out.println(“Supported languages are”);
System.out.println(” spudd_sperseus”);
System.out.println(” ppddl”);
System.out.println(” spudd_orig (an older SPUDD format)”);
System.out
.println(” spudd_conc (SPUDD format supporting concurrency)”);
}

/**
* @param args
*/
public static void main(String[] args) throws Exception {

// Parse file
// RDDL rddl = parser.parse(new
// File(“files/boolean/rddl/game_of_life_nointerm_mdp.rddl”));
// RDDL rddl = parser.parse(new
// File(“files/boolean/rddl/game_of_life_nointerm_pomdp.rddl”));
// RDDL rddl = parser.parse(new
// File(“files/boolean/rddl/sysadmin_bool_mdp.rddl”));
// RDDL rddl = parser.parse(new
// File(“files/boolean/rddl/sysadmin_bool_pomdp.rddl”));

if (args.length != 3) {
System.out
.println(“\nusage: RDDL-file/directory output-dir file-format\n”);
ShowFileFormats();
System.exit(1);
}
String arg2_intern = args[2].intern();
if (arg2_intern != SPUDD_ORIG && arg2_intern != SPUDD_CURR
&& arg2_intern != SPUDD_CONC && arg2_intern != PPDDL) {
System.out.println(“\nFile format ‘” + arg2_intern
+ “‘ not supported yet.\n”);
ShowFileFormats();
System.exit(2);
}
String rddl_file = args[0];
String output_dir = args[1];
if (output_dir.endsWith(File.separator))
output_dir = output_dir.substring(output_dir.length() – 1);

// If RDDL file is a directory, add all files
ArrayList rddl_files = new ArrayList();
ArrayList rddl_error = new ArrayList();
File file = new File(rddl_file);
if (file.isDirectory())
rddl_files.addAll(Arrays.asList(file.listFiles()));
else
rddl_files.add(file);

// Load RDDL files
RDDL rddl = new RDDL();
HashMap file2rddl = new HashMap();
for (File f : (ArrayList)rddl_files.clone()) {
RDDL r = null;
try {
r = parser.parse(f);
} catch (Exception e) {
System.out.println(e);
System.out.println(“Error processing: ” + f + “, skipping…”);
rddl_files.remove(f);
continue;
}
file2rddl.put(f, r);
rddl.addOtherRDDL(r, f.getName());
}

for (File f : rddl_files) {

try {
for (String instance_name : file2rddl.get(f)._tmInstanceNodes.keySet()) {
RDDL2FormatNonAdd r2s = new RDDL2FormatNonAdd(rddl, instance_name, arg2_intern);
r2s.export(output_dir);
}
} catch (Exception e) {
System.err.println(“Error processing: ” + f);
System.err.println(e);
e.printStackTrace(System.err);
System.err.flush();
rddl_files.remove(f);
rddl_error.add(f);
}
}

System.out.println(“\n\n===\n”);
for (File f : rddl_files)
System.out.println(“Processed: ” + f);
for (File f : rddl_error)
System.out.println(“Error processing: ” + f);
}

}