s z.
)
(T append(Y Z W) v append(CHI’D Z CHIWI))
4
,, ,
4) > snbbstkb.is,
4
c”
append ( e s , X , x n
.
s.
(
s (7 suffixCLI L) V 7 prefix )
n
.
5-
k.am#fixCDV
( €07
f-s T)v suffixes ,,
Tessae.is .,
+7
e.→ s appendf-, s , eatsd) V 7pefix.is)
append
,
P, €- f-
s.
.
append append
–
,
)
,
,,,
) 7 appendC- s T ) v suffixes TD n
append (P
. v sublist42
– ,,
)
prefix P Q ,
n
(
QV) )
. – fishes sails
) V7appendtW
,
s.ca b. ,
a)
v7appendCsss)
,,
–
s→ CblW]
QV ()
42,21 negation ofthe query :
,
Ca, b.d) .es#
add the
(7 suffixCLI ) 7 t)v Ca
7 – sublistf-D-isnbbs
kb.%
LV ,
prefix
42,21
.
Ga
2. (T append(Y Z W) V appendCCHI-i.IM
a)
append , ‘M w D
tra p p e d €¥4appendHBK) vappendC¥nIwD) I
V 7 append(Y, es, cutis, read – sewn
) trapped)V7append(es,Ziel
t,→c.y→a
w
2.(7 append(Y €9.1
,
) z.ws
→
Kiwis
appendx)
⇐7 CYshetwistsd)y→ w,→s
)
.
z
€1.
–
,
x-sss.is
(e)
empty clause
append
E3 ] ,,
appendxT
,
↳→ ,isL→ ,c
C
b
, “””
TD
, prefix P→ esd Q- s
sa
ils
]
,
H
ohY→ sis ,
its gang Ed
(3)
] ,L) subhgstfca
‘ – appendant, ‘d . z.appendktilxbysti.la) : –
append(x ,yiz)
2579 Iappend
←s
M¥-3103
, append43 –
a prefix appended –
met L=Cal
ogglboewtrec’D
:* !
append , – 9,751gal
suffix 41,4 7¥:/
,
fish) ks.4.ysefixcs.es/.appendf-,s,4.pnfix(
⇒
s a y s) ns.subbstls.4i-suffix
prefix(saw)
%f.sit) Tnfixlsass? append ‘
has – .
t
)
.
pnfxka3.SI
:* ¥s\
:*”
)
”
n
))
i t
(says
id ✓ -43
rules
(P
) ,4
°
S→ca7
–
append
-.
,
.
prefix
3.prefixes, L : ,
.
LD
. 4. ,L suffixes
: –
append
.
,
.
is
)
) appeudfiswhpnefidsa3.es
•••
;@outraced ; (backtrack
L-f-2.ae/-3# 1=(-22-3,4-47) mhm )