留学生辅导 Answer to Exercise 1 (the line numbers are for reference only. They may be

Answer to Exercise 1 (the line numbers are for reference only. They may be slightly different in your case)
Make the following changes to ¡°mnist_tutorial_tf.py¡±: Line 18 (insert):
Line 23 (replace):
Line 25 (replace):

Copyright By PowCoder代写 加微信 powcoder

Lines 37 (insert, ¡°MODEL_ADV_PATH¡± is for the tutorial of Week 11):
Lines 41 (replace):
from cleverhans.utils_tf import model_eval, tf_model_load
from cleverhans.attacks import FastGradientMethod, CarliniWagnerL2
MODEL_PATH = os.path.join(‘models’, ‘mnist’, ‘mnist’)
MODEL_ADV_PATH = os.path.join(‘models’, ‘mnist_adv’, ‘mnist_adv_trained’)
def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
test_end=1000, nb_epochs=NB_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE,
clean_train=CLEAN_TRAIN,
testing=False, backprop_through_attack=BACKPROP_THROUGH_ATTACK, nb_filters=NB_FILTERS, num_threads=None, model_path=MODEL_PATH, model_adv_path=MODEL_ADV_PATH,
label_smoothing=0.1):
Lines 136 (replace):
Lines 226 (insert):
Answer to Exercise 2 (the line numbers are for reference only. They may be slightly different in your case)
1. In order to get the first image, make the following changes to ¡°mnist_tutorial_cw.py¡±: (1) Line 38 (replace): TARGETED = False
2. In order to get the second image, make the following changes to ¡°mnist_tutorial_cw.py¡±:
(1) Line 18 (replace): from cleverhans.attacks import CarliniWagnerL2, FastGradientMethod (2) Line192(insert):
(3) Line 221: grid_viz_data[j, 1] = adv_image[j]
if os.path.exists(model_path + “.meta”): tf_model_load(sess, model_path)
train(sess, loss, x_train, y_train, evaluate=evaluate,
args=train_params, rng=rng, var_list=model.get_params()) saver = tf.train.Saver()
saver.save(sess, model_path)
flags.DEFINE_string(‘model_path’, MODEL_PATH,
‘Path to save or load the model trained on clean examples’)
flags.DEFINE_string(‘model_adv_path’, MODEL_ADV_PATH,
‘Path to save or load the model trained on adversarial samples’)
fgsm_params = { ‘eps’: 0.3,
‘clip_min’: 0.,
‘clip_max’: 1. }
fgsm = FastGradientMethod(model, sess=sess)
adv_x = fgsm.generate(x, **fgsm_params)
adv_image = adv_x.eval(session=sess, feed_dict={x: adv_inputs})

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com