CS代考 SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3

Subsetting Data in R – Lab

Subsetting Data in R – Lab

Copyright By PowCoder代写 加微信 powcoder

In this lab you can use the interactive console to explore but please record your commands here. Remember anything you type here can be “sent” to the console with Cmd-Enter (OS-X) or Cntr-Enter (Windows/Linux) (But only in side the {r} areas).

library(dplyr)
library(tidyverse)

Check to see if you have the mtcars dataset

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## 28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

What class is mtcars?

class(mtcars)

## [1] “data.frame”

How many observations (rows) and variables (columns) are in the mtcars dataset?

dim(mtcars)

## [1] 32 11

nrow(mtcars)

ncol(mtcars)

glimpse(mtcars)

## Rows: 32
## Columns: 11
## $ mpg 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,…
## $ cyl 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,…
## $ disp 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16…
## $ hp 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180…
## $ drat 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,…
## $ wt 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.…
## $ qsec 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18…
## $ vs 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,…
## $ am 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,…
## $ gear 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,…
## $ carb 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,…

Copy mtcars into an object called cars and rename mpg in cars to MPG. Use rename

cars = mtcars
cars = rename(cars, MPG = mpg)
head(cars)

## MPG cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Convert the column names of cars to all upper case. Use rename_all, and the toupper command (or colnames).

cars = rename_all(cars, toupper)
head(cars)

## MPG CYL DISP HP DRAT WT QSEC VS AM GEAR CARB
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

cars = mtcars
cn = colnames(cars) # extract column names
cn = toupper(cn) # make them uppercase
colnames(cars) = cn # reassign
head(cars)

## MPG CYL DISP HP DRAT WT QSEC VS AM GEAR CARB
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

You can create a column called car using the rownames_to_column function.

cars = rownames_to_column(mtcars, var = “car”)

Subset the columns from cars that end in “p” and call it pvars, use ends_with().

pvars = select(cars, car, ends_with(“p”))

Create a subset of the data that only contains the columns: wt, qsec, and hp and assign this object to carsSub – what are the dimensions of this dataset? Use select() (and dim):

carsSub = select(cars, car, wt, qsec, hp)
dim(carsSub)

## [1] 32 4

Convert the column names of carsSub to all upper case. Use rename_all(), and the toupper command (or colnames)

carsSub = rename_all(carsSub, toupper)

Subset the rows of cars that get more than 20 miles per gallon (mpg) of fuel efficiency – how many are there? Use filter()

cars_mpg = filter(cars, mpg > 20)
dim(cars_mpg)

## [1] 14 12

nrow(cars_mpg)

glimpse(cars_mpg)

## Rows: 14
## Columns: 12
## $ car “Mazda RX4”, “Mazda RX4 Wag”, “Datsun 710”, “Hornet 4 Drive”, “Me…
## $ mpg 21.0, 21.0, 22.8, 21.4, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3,…
## $ cyl 6, 6, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
## $ disp 160.0, 160.0, 108.0, 258.0, 146.7, 140.8, 78.7, 75.7, 71.1, 120.1…
## $ hp 110, 110, 93, 110, 62, 95, 66, 52, 65, 97, 66, 91, 113, 109
## $ drat 3.90, 3.90, 3.85, 3.08, 3.69, 3.92, 4.08, 4.93, 4.22, 3.70, 4.08,…
## $ wt 2.620, 2.875, 2.320, 3.215, 3.190, 3.150, 2.200, 1.615, 1.835, 2.…
## $ qsec 16.46, 17.02, 18.61, 19.44, 20.00, 22.90, 19.47, 18.52, 19.90, 20…
## $ vs 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1
## $ am 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1
## $ gear 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4
## $ carb 4, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2

# filter(cars, mpg > 20)

There are 14 cars. There are nrow(cars_mpg) cars.

cars %>% filter(mpg > 20) %>% nrow()

filter(cars, mpg > 20) %>% nrow()

Subset the rows that get less than 16 miles per gallon (mpg) of fuel efficiency and have more than 100 horsepower (hp) – how many are there?

filter(cars, mpg < 16 & hp > 100)

## car mpg cyl disp hp drat wt qsec vs am gear carb
## 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## 2 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## 4 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## 5 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## 6 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## 7 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## 8 28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## 9 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## 10 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

nrow(filter(cars, mpg < 16 & hp > 100))

nrow(filter(cars, mpg < 16, hp > 100))

cars %>% filter(mpg < 16, hp > 100) %>% nrow()

Create a subset from the cars data that only contains the columns: wt, qsec, and hp for only the cars with 8 cylinders and reassign this object to carsSub – what are the dimensions of this dataset?

carsSub = filter(cars, cyl == 8)
carsSub = select(carsSub, wt, qsec, hp, car)
dim(carsSub)

## [1] 14 4

carsSub = cars %>%
filter(cyl == 8) %>%
select(wt, qsec, hp, car)
dim(carsSub)

## [1] 14 4

Re-order the rows of carsSub by weight in increasing order. Use arrange()

carsSub = arrange(carsSub, wt)

Create a new variable in carsSub called wt2, which is equal to wt^2, using mutate(). Use piping %>%:

carsSub %>% mutate(wt2 = wt^2)

## wt qsec hp car wt2
## 1 3.170 14.50 264 Ford Pantera L 10.04890
## 2 3.435 17.30 150 AMC Javelin 11.79922
## 3 3.440 17.02 175 Hornet Sportabout 11.83360
## 4 3.520 16.87 150 Dodge Challenger 12.39040
## 5 3.570 15.84 245 Duster 360 12.74490
## 6 3.570 14.60 335 Maserati Bora 12.74490
## 7 3.730 17.60 180 Merc 450SL 13.91290
## 8 3.780 18.00 180 Merc 450SLC 14.28840
## 9 3.840 15.41 245 28 14.74560
## 10 3.845 17.05 175 Pontiac Firebird 14.78403
## 11 4.070 17.40 180 Merc 450SE 16.56490
## 12 5.250 17.98 205 Cadillac Fleetwood 27.56250
## 13 5.345 17.42 230 Chrysler Imperial 28.56902
## 14 5.424 17.82 215 29.41978

carsSub = carsSub %>% mutate(wt2 = wt^2)

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com