CS计算机代考程序代写 2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
library(fpp3)
?fpp3
global_economy
# Back to notes
## tsibble objects ——————————————————————–
z <- tibble(Month = paste(2019, month.abb[1:5]), Observation = c(50, 23, 34, 30, 25)) z %>%
mutate(Month = yearmonth(Month)) %>%
as_tsibble(index = Month)
# Back to notes
## Explore the OLYMPICS tsibble ———————————————————-
——
olympic_running %>% distinct(Length)
olympic_running$Year %>% range()
# We’ll talk about autoplot soon but let’s have a quick look
olympic_running %>%
filter(Length==”100″) %>%
autoplot(Time)
# Just to show you what you can do
ggplot(olympic_running, aes(x=Year, y = Time, colour = Sex)) +
geom_line() +
geom_point(size = 1) +
facet_wrap(~ Length, scales = “free_y”, nrow = 2) +
theme_minimal() +
scale_color_brewer(palette = “Dark2”) +
theme(legend.position = “bottom”, legend.title = element_blank()) +
labs(title = “Olympic running times”,
y=”Seconds”)
# Back to slides
## Prison ——————————————————————
library(readr)
prison <- readr::read_csv("prison_population.csv") %>%
mutate(Quarter = yearquarter(date)) %>%
select(-date) %>%
as_tsibble(
index = Quarter,
key = c(state, gender, legal, indigenous)
) %>% relocate(Quarter)
prison
prison %>% distinct(state)
prison %>% distinct(gender)
prison %>% distinct(legal)
prison %>% distinct(indigenous)
prison %>% distinct(state, gender)
prison$state %>% unique
prison$state %>% unique %>% as.matrix()
8*2*2*2
# Back to slides
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 1/8

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
# Examples of tsibbles in packages
## PBS ———————————————————————————–
——————————
# Exploring a rich tsibble
PBS
PBS %>% View()
PBS %>% distinct(ATC1_desc)
PBS %>% distinct(ATC2_desc)
# Back to slides
PBS %>%
filter(ATC2==”A10″) %>%
select(Cost)
# Back to slides
PBS %>%
filter(ATC2 == “A10”)
PBS %>%
filter(ATC2 == “A10″) %>%
filter_index(~”1991 Jul”)
# Back to slides
# Let’s sum Cost of A10 across Concession and Type, i.e., total A10 cost
a10 <- PBS %>%
filter(ATC2 == “A10”) %>%
select(Month, Concession, Type, Cost) %>%
summarise(total_cost = sum(Cost)) %>%
mutate(total_cost = total_cost / 1e6)
a10
# Back to slides – will show autoplot() later
a10 %>% autoplot()
# Note – points/obs are joint by lines
a10 %>% ggplot(aes(x=Month, y=total_cost)) +
geom_point()
a10 %>% autoplot(total_cost)
a10 %>% autoplot(total_cost) +
labs(title = “Antidiabetic drug sales”,
y = “$ million”)
## ANSETT ——————————————————————————–
———————————————
# This is available in tsibbledata – recall it loads when you load fpp3
ansett
ansett %>% autoplot()
attributes(ansett)
# [1W] Weekly data
# 4 Variables
# 2 Keys: Airports and Class
# 1 Time Index
# 1 Passengers
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 2/8

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
ansett %>% distinct(Class)
ansett %>% distinct(Airports)
# 10 Airports * 3 Class = 30 unique time series
# Let’s filter some particular series
melsyd <- ansett %>%
filter(Airports==”MEL-SYD”) %>%
select(-Airports)
melsyd # Have a look at what we have
melsyd %>% autoplot()
# So we now have all Melbourne to Sydney travel
# for all three classes
# Let’s filter and plot the Economy class series
melsyd %>%
filter(Class==”Economy”) %>%
mutate(Passengers = Passengers/1000) %>%
autoplot(Passengers) +
labs(title = “Ansett airlines economy class”,
subtitle = “Melbourne-Sydney”,
y = “Passengers (‘000)”)
# back to slides
# SHOW THIS EXAMPLE
# Making a tsibble out of a ts object
?lynx
attributes(lynx)
lynx %>% as_tsibble()
lynx %>% as_tsibble() %>% autoplot(value)
# Explore the pelt tsibble
help(pelt)
?pelt #https://en.wikipedia.org/wiki/Hudson%27s_Bay_Company
attributes(pelt)
# A bit of a plotting trick/lesson that may be useful later on
pelt %>% autoplot(Lynx)
pelt %>%
pivot_longer(2:3, names_to = “key”) %>%
ggplot(aes(x=Year, y=value, colour=key)) +
geom_line()
# Note this is annual data – talk about population cycle
# Lynx eating Hare
# Add some axis labels and title
pelt %>%
pivot_longer(2:3, names_to = “key”) %>%
ggplot(aes(x=Year, y=value, colour=key)) +
geom_line() + ggtitle(“Lynx eating Hare”) +
ylab(“Animals”)
## AUS ECONOMY
# A nice trick with distinct
global_economy %>% distinct(Code, Country)
global_economy$Year %>% unique() %>% range()
global_economy %>% distinct(Year) %>% range()
aus_economy <- global_economy %>%
filter(Code == “AUS”)
aus_economy
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 3/8

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
aus_economy %>%
autoplot(GDP) +
scale_y_log10()
# Your turn
aus_production %>%
autoplot(Bricks) +
labs(title = “Australian clay brick production”,
y= “Units (millions)”)
# MAX TEMPERATURE IN MELBOURNE ———————————————————–

vic_elec
vic_elec %>%
autoplot(Temperature)
# Index by day – notice now: Groups @ Day
vic_elec %>%
index_by(Day = date(Time))
# Let’s summarise over Groups – hence daily summaries
maxtemp <- vic_elec %>%
index_by(Day = date(Time)) %>%
summarise(
Temperature = max(Temperature),
Demand = sum(Demand),
Holiday = any(Holiday)
)
maxtemp %>%
autoplot(Temperature) +
ylab(“Max temperature”)
maxtemp %>%
ggplot(aes(x = Day, y = Temperature)) +
geom_point() + ylab(“Max temperature”)
# An alternative plot
maxtemp %>%
ggplot(aes(x = Day, y = 1)) +
geom_tile(aes(fill = Temperature)) +
scale_fill_gradient2(
low = “navy”,
mid = “yellow”,
high = “red”, midpoint=28) +
ylab(“”) + scale_y_discrete(expand=c(0,0))
# Season plots and subseries plots ——————————————————-
—–
## PBS AGAIN
a10 %>% gg_season(total_cost, labels = “both”) +
labs(y= “$ million”,
title=”Seasonal plot: antidiabetic drug sales”)
a10 %>%
gg_subseries(total_cost) +
labs(y= “$ million”,
title=”Seasonal plot: antidiabetic drug sales”)
## AUSTRALIAN BEER PRODUCTION ————————————————————
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 4/8

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
beer <- aus_production %>%
select(Quarter, Beer) %>%
filter(year(Quarter) >= 1992)
beer %>% autoplot(Beer)
beer %>% gg_season(Beer, labels=”right”)
beer %>% gg_subseries(Beer)
# Your turn
tourism %>% distinct(Region)
dat <- filter(tourism, Region == "Snowy Mountains"|Region == "Gold Coast", Purpose == "Holiday") # Or in the same way dat <- filter(tourism, Region %in% c("Snowy Mountains","Gold Coast"), Purpose == "Holiday") dat %>% autoplot()
dat %>% gg_season(Trips,labels=”right”)
# Very different patterns between the two
dat %>% gg_subseries(Trips,labels=”right”)
# Back to slides
# Australian state tourism
holidays <- tourism %>%
filter(Purpose == “Holiday”) %>%
group_by(State) %>%
summarise(Trips = sum(Trips))
# log scale
holidays %>% autoplot(Trips) +
scale_y_log10()+
ylab(“thousands of trips”) + xlab(“Year”) +
ggtitle(“Australian domestic holiday nights”)
# let’s filter the top three
tourism %>%
filter(Purpose == “Holiday”) %>%
group_by(State) %>%
filter(State %in% c(“New South Wales”, “Victoria”, “Queensland”)) %>%
summarise(Trips = sum(Trips)) %>% autoplot(Trips)
# Show these but then go back to slides to comment
holidays %>% gg_season(Trips) +
ylab(“thousands of trips”) +
ggtitle(“Australian domestic holiday nights”)
holidays %>%
gg_subseries(Trips) + ylab(“thousands of trips”) +
ggtitle(“Australian domestic holiday nights”)
# Time Series patterns
as_tsibble(fma::elec) %>%
filter(index >= 1980) %>%
autoplot(value) + xlab(“Year”) + ylab(“GWh”) +
ggtitle(“Australian electricity production”)
as_tsibble(fma::hsales) %>%
autoplot(value) +
ggtitle(“Sales of new one-family houses, USA”) +
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 5/8

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
xlab(“Year”) + ylab(“Total sales”)
as_tsibble(fma::ustreas) %>%
autoplot(value) +
ggtitle(“US Treasury Bill Contracts”) +
xlab(“Day”) + ylab(“price”)
pelt %>%
autoplot(Lynx) +
ggtitle(“Annual Canadian Lynx Trappings”) +
xlab(“Year”) + ylab(“Number trapped”)
# New ones
us_employment %>%
filter(Title == “Retail Trade”, year(Month) >= 1980) %>%
autoplot(Employed/1e3) +
ggtitle(“Retail employment, USA”) + ylab(“Million people”)
# Trend, cycle, seasonality (seasonal pattern changing – we will study this next week)
# Google, Apple, Facebook, Amazon
gafa_stock %>%
filter(Symbol == “AMZN”, year(Date) >= 2014) %>%
autoplot(Close) +
ggtitle(“Amazon closing stock price”) +
xlab(“Day”) + ylab(“$”)
# No seasonality in stock prices – especially if market is efficient
# Seems no trend or cycle because only looking at 1-year
# Change year(Date) >= 2014 to see what happens
# BAck to slides to explore Lynx
# Lag plots and autocorrelation
new_prod <- aus_production %>%
filter(year(Quarter) >= 1992)
new_prod %>%
select(Quarter, Beer) %>%
filter(year(Quarter) >= 1992)
new_prod %>% autoplot(Beer)
new_prod %>% gg_lag(Beer)
new_prod %>% gg_lag(Beer, geom=’point’)
new_prod %>% ACF(Beer, lag_max = 9)
new_prod %>% ACF(Beer, lag_max = 9) %>% autoplot()
new_prod %>% ACF(Beer) %>% autoplot()
## GOOGLE STOCK PRICE
google_2015 <- gafa_stock %>%
filter(Symbol == “GOOG”, year(Date) == 2015) %>%
select(Date, Close)
google_2015 %>% autoplot(Close)
google_2015 %>%
ACF(Close, lag_max =100) %>% autoplot()
google_2015 <- google_2015 %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE)
google_2015 %>%
ACF(Close, lag_max=100) %>%
autoplot()
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 6/8

2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R
## Google stock price longer
google_longer <- gafa_stock %>%
filter(Symbol == “GOOG”, year(Date) >= 2014) %>%
select(Date, Close) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE)
google_longer %>%
autoplot(Close)
google_longer %>%
ACF(Close, lag_max=100) %>%
autoplot()
# Aus monthly electricity ————-
elec2 <- as_tsibble(fma::elec) %>%
filter(year(index) >= 1980)
elec2 %>% autoplot(value)
elec2 %>% ACF(value, lag_max=48) %>%
autoplot()
# Your turn ——–
aus_production %>%
autoplot(Bricks)+
ggtitle(“Australian clay brick production”) +
xlab(“Year”) + ylab(“million units”)
aus_production %>%
gg_lag(Bricks, geom = ‘point’)
aus_production %>%
ACF(Bricks, geom = ‘point’) %>%
autoplot()
# Lynx ACF —————————-
# Mention updating packages – Regularly
pelt %>% autoplot(Lynx)
pelt %>% gg_lag(Lynx, geom = ‘point’)
pelt %>%
ACF(Lynx) %>%
autoplot()
# Back to slides — you’ll see plenty of examples in
# the tutes. Some of you may have seen some already
## WHITE NOISE ——————————————
seq_len(36)
rnorm(36)
set.seed(1)
wn <- tsibble(t = seq_len(3600), y = rnorm(3600), index = t) #rnorm(n, mean = 0, sd = 1) autoplot(wn)+ggtitle("White noise") ACF(wn) %>% autoplot()
set.seed(6)
wn <- tsibble(t = seq_len(36), y = rnorm(36), index = t) autoplot(wn)+ggtitle("White noise") https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 7/8 2021/6/6 https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R ACF(wn) %>% autoplot()
set.seed(1)
wn <- tsibble(t = seq_len(3600), y = rnorm(3600,mean=100,sd=100), index = t) #rnorm(n, mean = 0, sd = 1) autoplot(wn)+ggtitle("White noise") ACF(wn) %>% autoplot()
set.seed(6)
wn <- tsibble(t = seq_len(3600), y = rnorm(3600), index = t) autoplot(wn)+ggtitle("White noise") ACF(wn) %>% autoplot()
## PIGS ———————————————-
pigs <- aus_livestock %>%
filter(State == “Victoria”,
Animal == “Pigs”,
year(Month) >= 2014)
pigs %>% autoplot(Count/1e3) +
xlab(“Year”) + ylab(“Thousands”) +
ggtitle(“Number of pigs slaughtered in Victoria”)
pigs %>% ACF(Count) %>% autoplot()
## DIFFERENCING GOOGLE CLOSING PRICE ——————
dgoog <- gafa_stock %>%
filter(Symbol == “GOOG”, year(Date) >= 2018) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE) %>%
mutate(diff = difference(Close))
dgoog %>% autoplot(Close)
dgoog %>% ACF(Close) %>% autoplot()
dgoog %>% autoplot(diff)
dgoog %>% ACF(diff) %>% autoplot()
https://lms.monash.edu/pluginfile.php/12385675/mod_resource/content/0/2-tsgraphics.R 8/8