CS计算机代考程序代写 assembly compiler Introduction to Computer Systems 15-213/18-243, spring 2009

Introduction to Computer Systems 15-213/18-243, spring 2009

CSE 2421

Array and Structure Storage and Access

1

Today
Arrays
One-dimensional
Multi-dimensional (nested)
Multi-level
Structures
Allocation
Access
Alignment

2

Pointer arithmetic
If p is a pointer to data type T
And, the value of p (i.e., an address) is x_p
Then, then p+i has value x_p + L*i
where, L is the size of data type T
Thus for an array A of elements, A[i] == *(A+i)
Example
int E[10]; /*Assume int is 4 bytes long */
Suppose rdx holds starting address of array E
Suppose rcx holds integer index i
C expression Type Assembly code… result in eax Comment
E int * movq %rdx, %rax
E[i] int movl (%rdx,%rcx,4),%eax Reference memory
&(E[i]) int * leaq (%rdx,%rcx,4),%rax Generate address
E+i-1 int * leaq -4(%rdx,%rcx,4),%rax Generate address
*(E+i-3) int movl -12(%rdx,%rcx,4),%eax Reference memory

3

Arrays
C declaration: type array[length]
Arrays are means for storing multiple data objects of the same type
Stored sequentially, often accessed as an offset from a pointer which points to the beginning of the array.
size = length*sizeof(type)
If x is the address of the first byte of the first element in the array, then array element i will be stored at address x+sizeof(type)*i

Array Allocation
Basic Principle
T A[L];
Array of data type T and length L
Contiguously allocated region of L * sizeof(T) bytes in memory
char string[12];

x
x + 12

int val[5];

x
x + 4

x + 8

x + 12

x + 16

x + 20

double a[3];

x + 24
x

x + 8

x + 16

char *p[3];

x + 24
x

x + 8

x + 16

Array Access
Basic Principle
T A[L];
Array of data type T and length L
Identifier A can be used as a pointer to array element 0: Type T*

Reference Type Value
val[4] int 3
val int * x
val+1 int * x + 4
&val[2] int * x + 8
val[5] int ??
*(val+1) int 5
val + i int * x + 4 i
int val[5];
1
5
2
1
3
x
x + 4

x + 8

x + 12

x + 16

x + 20

Array Example
Declaration zip_dig cmu equivalent to int cmu[5]
Example arrays were allocated in successive 20 byte blocks
Not guaranteed to happen in general
#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };
zip_dig cmu;
1
5
2
1
3
16
20

24

28

32

36

zip_dig mit;
0
2
1
3
9
36
40

44

48

52

56

zip_dig ucb;
9
4
7
2
0
56
60

64

68

72

76

Array Accessing Example
Register %rdi contains starting address of array
Register %rsi contains
array index
Desired digit at
%rdi + 4*%rsi
Use memory reference (%rdi,%rsi,4)
use movl instruction to move 4 bytes
Use 4 byte register %eax

int get_digit
(zip_dig z, int digit)
{
return z[digit];
}
# %rdi = z
# %rsi = digit
movl (%rdi,%rsi,4), %eax # z[digit]
X86-64
zip_dig cmu;
1
5
2
1
3
16
20

24

28

32

36

8

# %rdi = z
movq $0, %rax # i = 0
jmp Test # goto Test
Loop: # loop:
incl (%rdi,%rax,4) # z[i]++
incq %rax # i++
Test: # middle
cmpq $4, %rax # i:4
jle Loop # if <=, goto Loop ret # ret Array Loop Example void zincr(zip_dig z) { size_t i; for (i = 0; i < ZLEN; i++) z[i]++; } Arrays – Example 1 Consider the following C code: static int array[30]; int x = array[25]; Which is equivalent to assembly code: REMINDER: $ in assembly language with a label gives an address. array and x must have been defined in the data segment (.data section) of the program. movq $array, %rbx # %rbx is base register movq $25, %rcx # %rcx is index register movl (%rbx,%rcx,4),%eax # %eax = array[25] movl %eax, $x # x = array[25] Why can’t we combine the last 2 instructions? movl (%rbx, %rcx,4), $x Arrays – Example 1 Consider the following C code: static int array[30]; int x = array[25]; Which is equivalent to assembly code: REMINDER: $ in assembly language with a label gives an address. array and x must have been defined in the data segment (.data section) of the program. movq $array, %rbx # %rbx is base register movq $25, %rcx # %rcx is index register movl (%rbx,%rcx,4),%eax # %eax = array[25] movl %eax, $x # x = array[25] Why can’t we combine the last 2 instructions? movl (%rbx, %rcx,4), $x Because memory to memory moves are not legal in x86-64 Arrays – Example 2 C code: int MyFunction1() { int data[20]; ... } What are the class/scope/linkage of the array? Arrays – Example 2 C code: int MyFunction1() { int data[20]; ... } What are the class/scope/linkage of the array? Automatic/Block/None Where is the array located? Stack or Heap? Arrays – Example 2 C code: int MyFunction1() { int data[20]; ... } What are the class/scope/linkage of the array? Automatic/Block/None Where is the array located? Stack or Heap? Stack. So how do we do that in x86-64?? Arrays – Example 2 C code: int MyFunction1() { int data[20]; ... } x86-64 code: MyFunction1: pushq %rbp # must do stack housekeeping first movq %rsp, %rbp subq $80,%rsp #Allocate space for array #on the stack: 20 elements, 4 bytes each=80 bytes leaq (%rsp), %rax #using %rax as base register for int data[20] array #OR movq %rsp, %rax ... Arrays – Example 3 C code: void MyFunction2() { char buffer[6]; ... } x86-64 code: MyFunction2: pushq %rbp movq %rsp, %rbp subq $6,%rsp # allocate 6 bytes for array leaq (%rsp), %rax # %rax is base register for char buffer[6] # OR movq %rsp, %rax ... http://en.wikibooks.org/wiki/X86_Disassembly/Data_Structures 16 Array – Example 3 MyFunction2: pushq %rbp movq %rsp, %rbp subq $6, %rsp leaq (%rsp), %rax #OR movq %rsp, %rax ... Caller Ret Address 8 byte value When we enter MyFunction2: %rsp Lower Addresses Higher Addresses Array – Example 3 MyFunction2: pushq %rbp movq %rsp, %rbp subq $6, %rsp leaq (%rsp), %rax #OR movq %rsp, %rax ... Caller’s %rbp 8 byte value Caller Ret Address 8 byte value After pushq %rbp : %rsp Lower Addresses 1 byte chunks 8 byte chunks Higher Addresses Array – Example 3 MyFunction2: pushq %rbp movq %rsp, %rbp subq $6, %rsp leaq (%rsp), %rax #OR movq %rsp, %rax ... Caller’s %rbp 8 byte value Caller Ret Address 8 byte value After movq %rsp, %rbp: %rsp %rbp Lower Addresses 1 byte chunks 8 byte chunks Higher Addresses Array – Example 3 MyFunction2: pushq %rbp movq %rsp, %rbp subq $6, %rsp leaq (%rsp), %rax #OR movq %rsp, %rax ... buffer[0] 1 byte value buffer[1] 1 byte value buffer[2] 1 byte value buffer[3] 1 byte value buffer[4] 1 byte value buffer[5] 1 byte value Caller’s %rbp 8 byte value Caller Ret Address 8 byte value %rsp After subq $6, %rsp: %rbp Lower Addresses 1 byte chunks 8 byte chunks Higher Addresses Array – Example 3 MyFunction2: pushq %rbp movq %rsp, %rbp subq $6, %rsp leaq (%rsp), %rax #OR movq %rsp, %rax ... What happens if %rcx equals 12, and the code tries to access (%rax,%rcx,1)? For example, suppose %dl equals 5, and this instruction is executed: movb %dl, (%rax,%rcx,1) buffer[0] 1 byte value buffer[1] 1 byte value buffer[2] 1 byte value buffer[3] 1 byte value buffer[4] 1 byte value buffer[5] 1 byte value Caller’s %rbp 8 byte value Caller Ret Address 8 byte value %rax %rsp %rax+6 %rbp %rax+12 2nd byte of 8 byte %rbp Lower Addresses 1 byte chunks 8 byte chunks Higher Addresses Array – Example 3 MyFunction2: pushq %rbp movq %rsp, %rbp subq $6, %rsp leaq (%rsp), %rax #OR movq %rsp, %rax ... What happens if %rcx equals 12, and the code tries to access (%rax,%rcx,1)? For example, suppose %dl equals 5, and this instruction is executed: movb %dl, (%rax,%rcx,1) Buffer Overflow! What was on the stack where we wrote 5?? We may have written over something important! buffer[0] 1 byte value buffer[1] 1 byte value buffer[2] 1 byte value buffer[3] 1 byte value buffer[4] 1 byte value buffer[5] 1 byte value Caller’s %rbp 8 byte value Caller Ret Address 8 byte value %rax %rsp %rax+6 %rbp %rax+12 2nd byte of 8 byte %rbp Lower Addresses 1 byte chunks 8 byte chunks Higher Addresses 5 Arrays On the Stack - cont Look for large allocation on the stack Look for data references using a register other than %rsp or %rbp as the base StackArrayEx: pushq %rbp movq %rsp, %rbp subq $520, %rsp leaq (%rsp), %rbx #OR movq %rsp, %rbx movl $0x0,(%rbx) #set first element to 0 What options can you think of for how the array was declared? Arrays On the Stack - cont Look for large allocation on the stack Look for data references using a register other than %rsp or %rbp as the base StackArrayEx: pushq %rbp movq %rsp, %rbp subq $520, %rsp leaq (%rsp), %rbx #OR movq %rsp, %rbx movl $0x0,(%rbx) #set first element to 0 What options can you think of for how the array was declared? char buffer[520]; Arrays On the Stack - cont Look for large allocation on the stack Look for data references using a register other than %rsp or %rbp as the base StackArrayEx: pushq %rbp movq %rsp, %rbp subq $520, %rsp leaq (%rsp), %rbx #OR movq %rsp, %rbx movl $0x0,(%rbx) #set first element to 0 What options can you think of for how the array was declared? char buffer[520]; short buffer[260]; Any of these would be options, right? int buffer[130]; long buffer[65]; Arrays On the Stack - initialization For the array on the preceding slide, how could the compiler generate code for a loop to initialize all of the array elements to 0? StackArrayEx: pushq %rbp movq %rsp, %rbp subq $520, %rsp pushq %rbx leaq (%rsp), %rbx #base register #OR movq %rsp, %rbx movq $130, %rcx # number of array elements initialize: decq %rcx # decrement index jl next # if less than 0 done movl $0x0, (%rbx,%rcx,4) # set 4 bytes of memory to zero jmp initialize # go again next: … Arrays On the Stack – cleanup For the array on the preceding slides, what needs to happen with respect to cleanup before return? StackArrayEx:CREATION pushq %rbp movq %rsp, %rbp subq $520, %rsp pushq %rbx leaq (%rsp), %rbx #base register #OR movq %rsp, %rbx Return:CLEANUP movq %rbp, %rsp #leave instruction popq %rbp ret buffer[0] 1 byte value buffer[1] 1 byte value buffer[2] 1 byte value buffer[3] 1 byte value buffer[4] 1 byte value buffer[519] 1 byte value Caller’s %rbp 8 byte value Caller Ret Address 8 byte value %rsp %rbx %rbp %rsp %rbp Arrays on the heap – part 1 “Global” Arrays (i.e. Static Class/Can be either File or Block Scope) Arrays of elements with initial values of 0 by default If stored in the data section of application (i.e., static arrays) Accessed through a memory address .section .data staticArray1: .skip 48,0 # staticArray1 is 48 bytes long # initialized to zero # equivalent to static char staticArray1[48]; staticArray2: .long 1 # staticArray2 is 20 bytes long .long 2 # equivalent to .long 3 # static int staticArray2[5]={1,2,3,4,5} .long 4 .long 5 Arrays on the heap – part 2 “Global” Arrays (i.e. Static Class/Can be either File or Block Scope) Arrays of elements with initial values of 0 by default If stored in the data section of application (i.e., static arrays) Accessed through a memory address MemArrayEx: pushq %rbp movq %rsp, %rbp pushq %rbx pushq %rsi movq $staticArray1, %rsi #base register movq $0x0, %rbx #index register movq $0x0,(%rsi,%rbx,4) #set 1st element to 0 Arrays If an array holds elements larger than 1 byte, the index will need to be multiplied by the size of the element #access to array of elements of size 4, #with scaling, where rax holds the index #i, and rbx is base register: #e.g., arr[i] = 11223344 movl $11223344,(%rbx,%rax,4) ... Arrays of size larger than 8 bytes What if the array holds elements larger than 8 bytes? For example, what if it is an array of structures? Recall that, in x86-64, scaling factors can only be: 1, 2, 4, or 8 so (%rbx, %rcx, 20) won’t compile!! Therefore, for arrays with elements larger than 8 bytes, manual scaling must be used What if we had an array of structures where each structure is 20 bytes??? #Here, two index registers are used, one #for the conventional index (here, %rcx), #and one for a scaled index register, #here, %rax. This is “manual scaling.” movq $0, %rcx # signed multiply # imulq aux, src, Dest imulq $20,%rcx,%rax # manually scale index, NOTE! 3 operand mult #Suppose we want: ptr = &arr[i] leaq (%rbx,%rax), %rdx # what is in %rdx??? Arrays of size larger than 8 bytes What if the array holds elements larger than 8 bytes? For example, what if it is an array of structures? Recall that, in x86-64, scaling factors can only be: 1, 2, 4, or 8 so (%rbx, %rcx, 20) won’t compile!! Therefore, for arrays with elements larger than 8 bytes, manual scaling must be used What if we had an array of structures where each structure is 20 bytes??? #Here, two index registers are used, one #for the conventional index (here, %rcx), #and one for a scaled index register, #here, %rax. This is “manual scaling.” movq $0, %rcx # signed multiply # imulq aux, src, Dest imulq $20,%rcx,%rax # manually scale index, NOTE! 3 operand mult #Suppose we want: ptr = &arr[i] leaq (%rbx,%rax), %rdx # what is in %rdx??? Address to beginning of structure in an array! /docProps/thumbnail.jpeg