CS计算机代考程序代写 algorithm Circle your tutorial section: • TCTOlOl Thu 1-3

Circle your tutorial section: • TCTOlOl Thu 1-3
• TFT0102 Thu -1-6
~INnHtl
I\~I \ \\II’:
ECE 4::!1F –
Introdudiou lo 1\lachinc Lcarniug i\lidTcrm F”\.amination
Wed Oct llith , 20lfl 4: 10-6:00 p.lll.
Iu~trudor At-hit-h h.hbli
Instructions
• Please read the folio”° ing m:.-truclions carefully.
• You have I hour fift) minute:; ll:50) to complete the exnm.
• Plea…«e make sure that rnu haw a complete exmn booklet.
• Plea…«e .’.\lli-,n,r all qut:5tions. Read each question carefully.
• The value of each QUlSt.ion is indicated. Allocate your time wisely1
• ~o additional pages will be collected beyond this answer book. You may use the reverse side of each page if needed to show additional work.
• This examination is closed-book; One 8.5 ‘< 11 aid-sheet is permitted. A non-programmable calculator is also allowed. • Good lucid PAGE l OF 1,1 10 marks 1 (40 MARKS) C'on idc-r n multi cl ll11r:1t dn ific ton prob! m h r th ,j t po n onnl 1 .x (r1 :r2) IR2 11d th" I hcl ll c {I 2,3} Throughout th1 rrob m ,nth f lk1w1n fiv polnls· whJ('thei11putdntnVC'Cto1 on'gi,,nb) X1 { 1,0)7', X2 (1,0)1, X1 {l.l)T, Xt ( ) lf X (0 3)1 nnd llu ussocL,1 Nl lnht,Js an given by Y1=I. Y2=2. y3=2, y4=l, yr,=3 Om aim is to find a linear clas.sification rule: u•o + w1x1 + w2x2 with weight vector w = ( ) that classifies this dataset. (a) Suppose we implement the perceptron learning algorithm for binary classification that finl\ted as a mi:;..c)n..,.,ifil’d point nnd th<' nlgorithm visits the points in tlw follov.ing order: ' ,. --- .1 -f" ' \ •' ' \ '\ '\ ~' \. -:: -= - l ll ... \ ''\ ' e<,nt'mt p!U't h) ht l't' '\ ' - \ \ ") .\\ '- \ \\\\\ "' \ '<. -\\ ~ ,, C ~ '"'\ "I ~t\ l 'I l>
\ —
f
‘\
\
“)

10marks
c) I xplnl11 hov. to c-0111hl111 pl\rt tn) nml (b) to d l\dop n cl 1hr tlon rult th:it ,,. n um ln11ut 😡 R2011tplll l11hd {l,2.:1}.Yourclru1[111tlo11tul mus1 ,clu,. 1rt t I ifiot1n n
2
lht ttnl11lng I. Skrtd1 yo1ir
‘< ~,(Jc.') f ") , $ fu._(,t) X• t1 \ '5 P.\GE 6 CW l l Ill rnorkJ Cd) S11p11u,c v:c \vi Ii lo unplonr111 a multi-cla."3 logistic regression model for clossif);ng !ht' tlltining 11> l.,ct H {w(I).w(2).w(3)} dl•11olc tIll’ mo:j
Please note that C, is a diagonal matrix where the j-th diagonal entry is A· G ~ fl
(
2. (30 MARKS) Co11Hidcr o. li1wflr rc•grcsHiou model whPrc the trnining set, is specified by
with x, E R_il 1 1 and Iii E JR. We usHume Llrnt, each rlnt,,t vector iH in t.h<' augrnent0rl dimension i.e.. x, (.r,,o - l,;i:,,1, ....r,,,,). We aim to fi11d a weight vector w E JRtl+J t.lw.L aims to minimized n wcight.cd i-.quttr<'d error losH function A1~T2 E111(w)= NL.,>..,•(w x,-Yi),
i• I
where A = (>..1, … , AN )7′ is a prc-spocifiecl vccLor of non-negative constunts t.hat. determine t.lw importance of each Hampl0.
Suppose that. w• mi11imi7,es Lho weighted squared error loss i.e., w•=arg min E~(w).
1
(1)
f[(
y, ((xi – ‘ )

~ fx”1(ILX.)W::- ~I~-r1._1l J
11 =
+'” ~,
.. –
t.t, C IV
I~ ~1J1l)()1)) – l)\l :l-..
.._
I ,.
wfll{d,1
C=
[
~ .•
: ]EJRNxN_ ,.ff;
O .. .

-Y’)
R
I} ~) I•
PAGE 9 01•’ 14

!continue part (n) here
PAGE 10 OF l,l

ll) 111Q1I,~ 1
(h) l 1miih 11111′:>.l’H’:-:,loll 1111 \ ,, (‘\~(” )) n1td 111-1• ii t,1 JHP\’Hlt- n (f’1tll) gn1dwut. d(•t-1·1•11( td~111ill1111
\
“‘ t+,’\ – L”l~’
\ …
……
E>i\(i,;I
‘)
) \ ‘(
f.11 111111w1 k.dh ,’Pill(‘”‘ inr f ll1• npf l11rnl ht1l111 h111 w’ .
\V
N
( I;I’) 1 1 ) ~ \/ (ti”1~. y;)2
(~ ~·, NItt) I
)
y
f”‘
~ ~
\ \
L•l
\
I
(~ II
tJI 1~
~
(
f1 ‘\Xf-
l ‘ \ ,X t
— i., N
[
I,…t -‘ \y VLI
:i X l
)
lo\
PAGE 11 OF 14

5 inarJ…s
(c
5 marks
(d) List three advantage of usmg the SGD algorithm over the analytical solution in pan c,
,
L
.J

PAGE 12 OF 14

20 m.irks
1
3 Co11-.1dr-r a hm n lmt:u clO! ifirn 1011 probkm \\h I
{ 1, +I} fc
It
2 marks 6 marks
I (w) I ,\wH,
trl\11111\ dl\t
l l’Oll”-trllCl l c1″1″-lhtr /1_. (x) SI ll(t l +tl I H Ill r1 ..,
X2
<; thIO\\ 1h I lnbdrtr,r to 1 111111 hh, In the figure abo\'e, the adjacent ,·ertical (nn.u,~. 11 11,.,, \ In~iA n 11111:r• ,,m411111I Hl;1•!.1•’1 11 pn. yrhlc dc•f’l<;ion ho1111rlury 111 t.hr• figlll(' hrlow. How lllflil\ p11l11L'1 lllf' 1111AI 111• ilfl,·rl 1,,1d I.! l'\CF l.t m' I I 111 111\ P"i111 111, ,,ti ,Ir, if11 ,I X X:, + ++ + I) ) 0 000 00 ,, (x, 1'Jl ( t1'1 %u..,J:t >ll I f
0
000 00
X1
t £.,
((
1
.I