CS计算机代考程序代写 AI # captureGraphicsDisplay.py

# captureGraphicsDisplay.py
# ————————-
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).

from graphicsUtils import *
import math, time
from game import Directions

###########################
# GRAPHICS DISPLAY CODE #
###########################

# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.

DEFAULT_GRID_SIZE = 30.0
INFO_PANE_HEIGHT = 35
BACKGROUND_COLOR = formatColor(0,0,0)
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
INFO_PANE_COLOR = formatColor(.4,.4,0)
SCORE_COLOR = formatColor(.9, .9, .9)
PACMAN_OUTLINE_WIDTH = 2
PACMAN_CAPTURE_OUTLINE_WIDTH = 4

GHOST_COLORS = []
GHOST_COLORS.append(formatColor(.9,0,0)) # Red
GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue
GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange
GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green
GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow
GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple

TEAM_COLORS = GHOST_COLORS[:2]

GHOST_SHAPE = [
( 0, 0.3 ),
( 0.25, 0.75 ),
( 0.5, 0.3 ),
( 0.75, 0.75 ),
( 0.75, -0.5 ),
( 0.5, -0.75 ),
(-0.5, -0.75 ),
(-0.75, -0.5 ),
(-0.75, 0.75 ),
(-0.5, 0.3 ),
(-0.25, 0.75 )
]
GHOST_SIZE = 0.65
SCARED_COLOR = formatColor(1,1,1)

#GHOST_VEC_COLORS = map(colorToVector, GHOST_COLORS)
GHOST_VEC_COLORS = [colorToVector(c) for c in GHOST_COLORS]

PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255)
PACMAN_SCALE = 0.5
#pacman_speed = 0.25

# Food
FOOD_COLOR = formatColor(1,1,1)
FOOD_SIZE = 0.1

# Laser
LASER_COLOR = formatColor(1,0,0)
LASER_SIZE = 0.02

# Capsule graphics
CAPSULE_COLOR = formatColor(1,1,1)
CAPSULE_SIZE = 0.25

# Drawing walls
WALL_RADIUS = 0.15

class InfoPane:
def __init__(self, layout, gridSize, redTeam, blueTeam):
self.gridSize = gridSize
self.width = (layout.width) * gridSize
self.base = (layout.height + 1) * gridSize
self.height = INFO_PANE_HEIGHT
self.fontSize = 24
self.textColor = PACMAN_COLOR
self.redTeam = redTeam
self.blueTeam = blueTeam
self.drawPane()

def toScreen(self, pos, y = None):
“””
Translates a point relative from the bottom left of the info pane.
“””
if y == None:
x,y = pos
else:
x = pos

x = self.gridSize + x # Margin
y = self.base + y
return x,y

def drawPane(self):
self.scoreText = text( self.toScreen(0, 0 ), self.textColor, self._infoString(0,1200), “Consolas”, self.fontSize, “bold”)
self.redText = text( self.toScreen(230, 0 ), TEAM_COLORS[0], self._redScoreString(), “Consolas”, self.fontSize, “bold”)
self.redText = text( self.toScreen(690, 0 ), TEAM_COLORS[1], self._blueScoreString(), “Consolas”, self.fontSize, “bold”)

def _redScoreString(self):
return “RED: % 10s “%(self.redTeam[:12])

def _blueScoreString(self):
return “BLUE: % 10s “%(self.blueTeam[:12])

def updateRedText(self, score):
changeText(self.redText, self._redScoreString())

def updateBlueText(self, score):
changeText(self.blueText, self._blueScoreString())

def initializeGhostDistances(self, distances):
self.ghostDistanceText = []

size = 20
if self.width < 240: size = 12 if self.width < 160: size = 10 for i, d in enumerate(distances): t = text( self.toScreen(self.width/2 + self.width/8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold") self.ghostDistanceText.append(t) def _infoString(self, score, timeleft): return "SCORE: % 4d TIME: % 4d" % (score, timeleft) def updateScore(self, score, timeleft): changeText(self.scoreText, self._infoString(score,timeleft)) def setTeam(self, isBlue): text = "RED TEAM" if isBlue: text = "BLUE TEAM" self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold") def updateGhostDistances(self, distances): if len(distances) == 0: return if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances) else: for i, d in enumerate(distances): changeText(self.ghostDistanceText[i], d) def drawGhost(self): pass def drawPacman(self): pass def drawWarning(self): pass def clearIcon(self): pass def updateMessage(self, message): pass def clearMessage(self): pass class PacmanGraphics: def __init__(self, redTeam, blueTeam, zoom=1.0, frameTime=0.0, capture=False): self.expandedCells = [] self.have_window = 0 self.currentGhostImages = {} self.pacmanImage = None self.zoom = zoom self.gridSize = DEFAULT_GRID_SIZE * zoom self.capture = capture self.frameTime = frameTime self.redTeam = redTeam self.blueTeam = blueTeam def initialize(self, state, isBlue = False): self.isBlue = isBlue self.startGraphics(state) # self.drawDistributions(state) self.distributionImages = None # Initialized lazily self.drawStaticObjects(state) self.drawAgentObjects(state) # Information self.previousState = state def startGraphics(self, state): self.layout = state.layout layout = self.layout self.width = layout.width self.height = layout.height self.make_window(self.width, self.height) self.infoPane = InfoPane(layout, self.gridSize, self.redTeam, self.blueTeam) self.currentState = layout def drawDistributions(self, state): walls = state.layout.walls dist = [] for x in range(walls.width): distx = [] dist.append(distx) for y in range(walls.height): ( screen_x, screen_y ) = self.to_screen( (x, y) ) block = square( (screen_x, screen_y), 0.5 * self.gridSize, color = BACKGROUND_COLOR, filled = 1, behind=2) distx.append(block) self.distributionImages = dist def drawStaticObjects(self, state): layout = self.layout self.drawWalls(layout.walls) self.food = self.drawFood(layout.food) self.capsules = self.drawCapsules(layout.capsules) refresh() def drawAgentObjects(self, state): self.agentImages = [] # (agentState, image) for index, agent in enumerate(state.agentStates): if agent.isPacman: image = self.drawPacman(agent, index) self.agentImages.append( (agent, image) ) else: image = self.drawGhost(agent, index) self.agentImages.append( (agent, image) ) refresh() def swapImages(self, agentIndex, newState): """ Changes an image from a ghost to a pacman or vis versa (for capture) """ prevState, prevImage = self.agentImages[agentIndex] for item in prevImage: remove_from_screen(item) if newState.isPacman: image = self.drawPacman(newState, agentIndex) self.agentImages[agentIndex] = (newState, image ) else: image = self.drawGhost(newState, agentIndex) self.agentImages[agentIndex] = (newState, image ) refresh() def update(self, newState): agentIndex = newState._agentMoved agentState = newState.agentStates[agentIndex] if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState) prevState, prevImage = self.agentImages[agentIndex] if agentState.isPacman: self.animatePacman(agentState, prevState, prevImage) else: self.moveGhost(agentState, agentIndex, prevState, prevImage) self.agentImages[agentIndex] = (agentState, prevImage) if newState._foodEaten != None: self.removeFood(newState._foodEaten, self.food) if newState._capsuleEaten != None: self.removeCapsule(newState._capsuleEaten, self.capsules) # dumping food if newState._foodAdded != None: for foodPos in newState._foodAdded: self.addFood(foodPos, self.food, newState.layout) self.infoPane.updateScore(newState.score, newState.timeleft) if 'ghostDistances' in dir(newState): self.infoPane.updateGhostDistances(newState.ghostDistances) def make_window(self, width, height): grid_width = (width-1) * self.gridSize grid_height = (height-1) * self.gridSize screen_width = 2*self.gridSize + grid_width screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT begin_graphics(screen_width, screen_height, BACKGROUND_COLOR, "CS188 Pacman") def drawPacman(self, pacman, index): position = self.getPosition(pacman) screen_point = self.to_screen(position) endpoints = self.getEndpoints(self.getDirection(pacman)) width = PACMAN_OUTLINE_WIDTH outlineColor = PACMAN_COLOR fillColor = PACMAN_COLOR if self.capture: outlineColor = TEAM_COLORS[index % 2] fillColor = GHOST_COLORS[index] width = PACMAN_CAPTURE_OUTLINE_WIDTH return [circle(screen_point, PACMAN_SCALE * self.gridSize, fillColor = fillColor, outlineColor = outlineColor, endpoints = endpoints, width = width)] def getEndpoints(self, direction, position=(0,0)): x, y = position pos = x - int(x) + y - int(y) width = 30 + 80 * math.sin(math.pi* pos) delta = width / 2 if (direction == 'West'): endpoints = (180+delta, 180-delta) elif (direction == 'North'): endpoints = (90+delta, 90-delta) elif (direction == 'South'): endpoints = (270+delta, 270-delta) else: endpoints = (0+delta, 0-delta) return endpoints def movePacman(self, position, direction, image): screenPosition = self.to_screen(position) endpoints = self.getEndpoints( direction, position ) r = PACMAN_SCALE * self.gridSize moveCircle(image[0], screenPosition, r, endpoints) refresh() def animatePacman(self, pacman, prevPacman, image): if self.frameTime < 0: print('Press any key to step forward, "q" to play') keys = wait_for_keys() if 'q' in keys: self.frameTime = 0.1 if self.frameTime > 0.01 or self.frameTime < 0: start = time.time() fx, fy = self.getPosition(prevPacman) px, py = self.getPosition(pacman) frames = 4.0 for i in range(1,int(frames) + 1): pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames self.movePacman(pos, self.getDirection(pacman), image) refresh() sleep(abs(self.frameTime) / frames) else: self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image) refresh() def getGhostColor(self, ghost, ghostIndex): if ghost.scaredTimer > 0:
return SCARED_COLOR
else:
return GHOST_COLORS[ghostIndex]

def drawGhost(self, ghost, agentIndex):
pos = self.getPosition(ghost)
dir = self.getDirection(ghost)
(screen_x, screen_y) = (self.to_screen(pos) )
coords = []
for (x, y) in GHOST_SHAPE:
coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y))

colour = self.getGhostColor(ghost, agentIndex)
body = polygon(coords, colour, filled = 1)
WHITE = formatColor(1.0, 1.0, 1.0)
BLACK = formatColor(0.0, 0.0, 0.0)

dx = 0
dy = 0
if dir == ‘North’:
dy = -0.2
if dir == ‘South’:
dy = 0.2
if dir == ‘East’:
dx = 0.2
if dir == ‘West’:
dx = -0.2
leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
ghostImageParts = []
ghostImageParts.append(body)
ghostImageParts.append(leftEye)
ghostImageParts.append(rightEye)
ghostImageParts.append(leftPupil)
ghostImageParts.append(rightPupil)

return ghostImageParts

def moveEyes(self, pos, dir, eyes):
(screen_x, screen_y) = (self.to_screen(pos) )
dx = 0
dy = 0
if dir == ‘North’:
dy = -0.2
if dir == ‘South’:
dy = 0.2
if dir == ‘East’:
dx = 0.2
if dir == ‘West’:
dx = -0.2
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)

def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
new_x, new_y = self.to_screen(self.getPosition(ghost))
delta = new_x – old_x, new_y – old_y

for ghostImagePart in ghostImageParts:
move_by(ghostImagePart, delta, lift=True)
refresh()

if ghost.scaredTimer > 0:
color = SCARED_COLOR
else:
color = GHOST_COLORS[ghostIndex]
edit(ghostImageParts[0], (‘fill’, color), (‘outline’, color))
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
refresh()

def getPosition(self, agentState):
if agentState.configuration == None: return (-1000, -1000)
return agentState.getPosition()

def getDirection(self, agentState):
if agentState.configuration == None: return Directions.STOP
return agentState.configuration.getDirection()

def finish(self):
end_graphics()

def to_screen(self, point):
( x, y ) = point
#y = self.height – y
x = (x + 1)*self.gridSize
y = (self.height – y)*self.gridSize
return ( x, y )

# Fixes some TK issue with off-center circles
def to_screen2(self, point):
( x, y ) = point
#y = self.height – y
x = (x + 1)*self.gridSize
y = (self.height – y)*self.gridSize
return ( x, y )

def drawWalls(self, wallMatrix):
wallColor = WALL_COLOR
for xNum, x in enumerate(wallMatrix):
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0] if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]

for yNum, cell in enumerate(x):
if cell: # There’s a wall here
pos = (xNum, yNum)
screen = self.to_screen(pos)
screen2 = self.to_screen2(pos)

# draw each quadrant of the square based on adjacent walls
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)

# NE quadrant
if (not nIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), ‘arc’)
if (nIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (eIsWall) and (not neIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), ‘arc’)
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)

# NW quadrant
if (not nIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), ‘arc’)
if (nIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (wIsWall) and (not nwIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), ‘arc’)
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)

# SE quadrant
if (not sIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), ‘arc’)
if (sIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (eIsWall) and (not seIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), ‘arc’)
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)

# SW quadrant
if (not sIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), ‘arc’)
if (sIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (wIsWall) and (not swIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), ‘arc’)
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)

def isWall(self, x, y, walls):
if x < 0 or y < 0: return False if x >= walls.width or y >= walls.height:
return False
return walls[x][y]

def drawFood(self, foodMatrix ):
foodImages = []
color = FOOD_COLOR
for xNum, x in enumerate(foodMatrix):
if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0] if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1]
imageRow = []
foodImages.append(imageRow)
for yNum, cell in enumerate(x):
if cell: # There’s food here
screen = self.to_screen((xNum, yNum ))
dot = circle( screen,
FOOD_SIZE * self.gridSize,
outlineColor = color, fillColor = color,
width = 1)
imageRow.append(dot)
else:
imageRow.append(None)
return foodImages

def drawCapsules(self, capsules ):
capsuleImages = {}
for capsule in capsules:
( screen_x, screen_y ) = self.to_screen(capsule)
dot = circle( (screen_x, screen_y),
CAPSULE_SIZE * self.gridSize,
outlineColor = CAPSULE_COLOR,
fillColor = CAPSULE_COLOR,
width = 1)
capsuleImages[capsule] = dot
return capsuleImages

def removeFood(self, cell, foodImages ):
x, y = cell
remove_from_screen(foodImages[x][y])

def addFood(self, pos, foodImages, layout):
# only called with capture / contest mode, so
# assume its red for now
x, y = pos
color = TEAM_COLORS[0]
if (x * 2) >= layout.width:
color = TEAM_COLORS[1]

screen = self.to_screen(pos)
dot = circle(screen,
FOOD_SIZE * self.gridSize,
outlineColor = color,
fillColor = color,
width = 1)
foodImages[x][y] = dot
pass

def removeCapsule(self, cell, capsuleImages ):
x, y = cell
remove_from_screen(capsuleImages[(x, y)])

def drawExpandedCells(self, cells):
“””
Draws an overlay of expanded grid positions for search agents
“””
n = float(len(cells))
baseColor = [1.0, 0.0, 0.0]
self.clearExpandedCells()
self.expandedCells = []
for k, cell in enumerate(cells):
screenPos = self.to_screen( cell)
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
block = square(screenPos,
0.5 * self.gridSize,
color = cellColor,
filled = 1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0: refresh() def clearDebug(self): if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
for cell in self.expandedCells:
remove_from_screen(cell)

def debugDraw(self, cells, color=[1.0, 0.0, 0.0], clear=False):
n = float(len(cells))
if clear:
self.clearDebug()
self.expandedCells = []

for k, cell in enumerate(cells):
screenPos = self.to_screen( cell)
cellColor = formatColor(*color)
block = square(screenPos,
0.5 * self.gridSize,
color = cellColor,
filled = 1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0: refresh() def clearExpandedCells(self): if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
for cell in self.expandedCells:
remove_from_screen(cell)

def updateDistributions(self, distributions):
“Draws an agent’s belief distributions”
if self.distributionImages == None:
self.drawDistributions(self.previousState)
for x in range(len(self.distributionImages)):
for y in range(len(self.distributionImages[0])):
image = self.distributionImages[x][y]
weights = [dist[ (x,y) ] for dist in distributions]

if sum(weights) != 0:
pass
# Fog of war
color = [0.0,0.0,0.0]
colors = GHOST_VEC_COLORS[1:] # With Pacman
if self.capture: colors = GHOST_VEC_COLORS
for weight, gcolor in zip(weights, colors):
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
changeColor(image, formatColor(*color))
refresh()

class FirstPersonPacmanGraphics(PacmanGraphics):
def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0):
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
self.showGhosts = showGhosts
self.capture = capture

def initialize(self, state, isBlue = False):

self.isBlue = isBlue
PacmanGraphics.startGraphics(self, state)
# Initialize distribution images
walls = state.layout.walls
dist = []
self.layout = state.layout

# Draw the rest
self.distributionImages = None # initialize lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)

# Information
self.previousState = state

def lookAhead(self, config, state):
if config.getDirection() == ‘Stop’:
return
else:
pass
# Draw relevant ghosts
allGhosts = state.getGhostStates()
visibleGhosts = state.getVisibleGhosts()
for i, ghost in enumerate(allGhosts):
if ghost in visibleGhosts:
self.drawGhost(ghost, i)
else:
self.currentGhostImages[i] = None

def getGhostColor(self, ghost, ghostIndex):
return GHOST_COLORS[ghostIndex]

def getPosition(self, ghostState):
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
return (-1000, -1000)
else:
return PacmanGraphics.getPosition(self, ghostState)

def add(x, y):
return (x[0] + y[0], x[1] + y[1])

# Saving graphical output
# ———————–
# Note: to make an animated gif from this postscript output, try the command:
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
# convert is part of imagemagick (freeware)

SAVE_POSTSCRIPT = False
POSTSCRIPT_OUTPUT_DIR = ‘frames’
FRAME_NUMBER = 0
import os

def saveFrame():
“Saves the current graphical output as a postscript file”
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
if not SAVE_POSTSCRIPT: return
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR)
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, ‘frame_%08d.ps’ % FRAME_NUMBER)
FRAME_NUMBER += 1
writePostscript(name) # writes the current canvas