CS计算机代考程序代写 /*

/*
* Sorting functionality for Lab 9.
*
* Authors: Tobias Edwards
* [YOUR NAME HERE]
* Date: April 2019
*/

#include
#include
#include

#include “arrays.h”
#include “sorting.h”

int global_partitions = 0;

// ================= Function Prototypes for Helper Functions =================

// Naively paritions an array on pivot value given by pivot.
//
// This function will allocate a new array rather than partitioning in place,
// and requires 3 iterations of the array to partition, and then 1 to copy the
// result back to the input array.
//
// This is NOT the best we can do.
//
// [[ STUDENT TASK ]]
// Write a better version of this function.
//
// Use the time_function() function provided to determine what effect this will
// have.
int naive_partition_on_pivot(int *array, int n, int pivot);

// ========================= Function Implementations =========================

// Iteratively insertion sorts an array of n integers in ascending order.
void insertion_sort(int *array, int n) {
// i will be the number of elements at the start of the array which are
// already sorted, j will be used to find the index in which the next element
// should be inserted.
int i, j, next;

// Initially, A[0] is sorted as it’s just one element. Thus we start at i = 1.
for (i = 1; i < n; i++) { next = array[i]; // Search for the index where we should insert next. Note that this is // better than having to perform swaps, as we don't insert next until we've // found where it should be inserted. for (j = i - 1; j >= 0 && array[j] > next; j–) {
// Move the element to the right.
array[j + 1] = array[j];
}
// Insert the next element to (j + 1), as the for loop will have
// decremented it one too many positions.
array[j + 1] = next;
}
}

// Quicksorts a given array of n integers in ascending order.
//
// Uses the provided partition function. The pivot selection strategy should
// be built into the partition function. The partition function should return
// the index of the pivot after partitioning.
void quicksort(int *array, int n, int (*partition)(int *array, int n)) {
int pivot_idx;

// If n is 0 or 1 then array must already be sorted.
if (n == 0 || n == 1) {
return;
}

global_partitions++;
pivot_idx = partition(array, n);

// The two sections of the array to be sorted are now:
// [0..pivot_idx – 1] and [pivot_idx + 1..n-1].
quicksort(array, pivot_idx, partition);
quicksort(array + pivot_idx + 1, n – (pivot_idx + 1), partition);
}

// Partitions an array using the first element as the pivot.
//
// Returns the index of the first element with the same value as the pivot.
int partition_first_pivot(int *array, int n) {
int pivot, pivot_idx;
assert(n > 0);

// We’re just selecting the first element to be the pivot.
pivot = array[0];
pivot_idx = naive_partition_on_pivot(array, n, pivot);

return pivot_idx;
}

// Partitions an array using a random element as the pivot.
//
// Returns the index of the first element with the same value as the pivot.
int partition_random_pivot(int *array, int n) {
int pivot, pivot_idx;
assert(n > 0);

pivot = array[rand() % n];
pivot_idx = naive_partition_on_pivot(array, n, pivot);

return pivot_idx;
}

// Naively paritions an array on pivot value given by pivot.
//
// This function will allocate a new array rather than partitioning in place,
// and requires 3 iterations of the array to partition, and then 1 to copy the
// result back to the input array.
//
// This is NOT the best we can do.
//
// [[ STUDENT TASK ]]
// Write a better version of this function.
//
// Use the time_function() function provided to determine what effect this will
// have.
int naive_partition_on_pivot(int *array, int n, int pivot) {
// We’ll use the tmp array to build up the partitioned result.
int *tmp;
// i will indicate our position in the original array, and j will indicate
// the position in tmp.
int i, j;
int pivot_idx;

tmp = malloc(sizeof(*tmp) * n);
assert(tmp);
// We haven’t inserted anything into tmp yet, so j = 0;
j = 0;

// First, insert all elements less than pivot into tmp.
for (i = 0; i < n; i++) { if (array[i] < pivot) { tmp[j++] = array[i]; } } // Next element from here in tmp will be the pivot. pivot_idx = j; // Now, insert all the elements which are of equal value to the pivot // into tmp. for (i = 0; i < n; i++) { if (array[i] == pivot) { tmp[j++] = array[i]; } } // Finally, insert all elements greater than the pivot into the tmp array. for (i = 0; i < n; i++) { if (array[i] > pivot) {
tmp[j++] = array[i];
}
}

// At this point we should have inserted n elements into tmp.
assert(j == n);

// Now all is left is to copy over all the elements from tmp to array
// and free the tmp array
for (i = 0; i < n; i++) { array[i] = tmp[i]; } free(tmp); return pivot_idx; }