CS计算机代考程序代写 ER AI COPE-01 Digital Logic.indd

COPE-01 Digital Logic.indd

10

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

It
s

ta
rt

s
w

it
h
a

t
h
o
u
gh

t

A
n

I
n

ve
st

ig
at

io
n

o
f

th
e

L
aw

s
o

f
T

h
o

u
g

h
t

o
n

W
h

ic
h

a
re

F
o

u
n

d
e

d
t

h
e

M
at

h
e

m
at

ic
al

T

h
e

o
ri

e
s

o
f

Lo
g

ic
a

n
d

P
ro

b
ab

il
it

ie
s

b
y

G
eo

rg
e

B
o
o
le

, 1
85

4

G
e

o
rg

e
B

o
o

l,
1

81
5-

18
64

8

1
D

ig
it
al

L
o
gi

c

U
w

e
R

.
Z

im
m

er

T
h
e

A
u
st

ra
li
an

N
at

io
n
al

U
n
iv

er
si

ty

C
o

m
p

u
te

r
O

rg
an

is
at

io
n

&
P

ro
g

ra
m

E
xe

cu
ti

o
n

2
02

1

11

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

B
o
o
le

an
V

al
u
es

&
O

p
er

at
o
rs

T
h

e
re

a
re

t
w

o
v

al
u

e
s:

e

.g
. T

ru
e

an
d

F
al

se
.

(a
k

a
“1


an

d

0”
)

Tw
o

b
in

ar
y

o
p

e
ra

to
rs

o
n

e
xp

re
ss

io
n

s
a ,

b
:

a

b
0

(a
k

a
a

b
+

o
r “

a
O

R
b


o

r
S

U
M

)

a
b

/

(a
k

a
a

b
$

o
r “

a
A

N
D

b

o
r

P
R

O
D

U
C

T
)

O
n

e
u

n
ar

y
o

p
e

ra
to

r
o

n
a

n
e

xp
re

ss
io

n
a

:

a

(a
k

a
a

J
o

r
al

o
r “

N
O

T
a

”)

Tr
u

th
t

ab
le

s:

a
b

a
b

0
a

b
/

a
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Tr

u
e

Tr
u

e
Fa

ls
e

Tr
u

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Tr
u

e
Tr

u
e

Fa
ls

e
Tr

u
e

Tr
u

e
Tr

u
e

Tr
u

e

9

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
o

f
4

8
1

(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ef

er
en

ce
s

fo
r

th
is

c
h
ap

te
r

[P
at

te
rs

o
n

17
]

D
av

id
A

. P
at

te
rs

o
n

&
J

o
h

n
L

. H
e

n
n

e
ss

y
C

o
m

p
u

te
r

O
rg

an
iz

at
io

n
a

n
d

D
e

si
g

n

T
h

e
H

ar
d

w
ar

e
/S

o
ft

w
ar

e
I

n
te

rf
ac

e
A

p
p

e
n

d
ix

A

T
h

e
B

as
ic

s
o

f
Lo

g
ic

D
e

si
g

n

A
R

M
e

d
it

io
n

, M
o

rg
an

K
au

fm
an

n
2

01
7

14

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

A
xi

o
m

at
ic

B
o

o
le

an
A

lg
e

b
ra


m

an
y

o
th

e
r

ax
io

m
at

ic
f

o
rm

u
la

ti
o

n
s

o
f

B
o

o
le

an
a

lg
e

b
ra

e
xi

st
.

12

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

A
xi

o
m

at
ic

B
o
o
le

an
A

lg
eb

ra
(

W
h
it

eh
ea

d
1

8
9
8
)

0

-L
aw

s
/

-L
aw

s
a

a
0

=
a

a
a

/
=

a
(r

e
d

u
n

d
an

t)

a
b

0
=

b
a

0
a

b
/

=
b

a
/

(c
o

m
m

u
ta

ti
ve

)

a
b

c
0

0
^

h
=

a
b

c
0

0
^

h
a

b
c

/
/

^
h

=
a

b
c

/
/

^
h

(a
ss

o
ci

at
iv

e
)

a
a

b
0

/
^

h
=

a

(a
b

so
rp

ti
o

n
)

a
b

c
/

0
^

h
=

a

b
a

c
/

0
/

^
^

h
h

(d
is

tr
ib

u
ti

o
n

)

T
ru

e
a
/

=
a

(i
d

e
n

ti
ty

)

(c
o

n
st

an
t)

a
a

0
=

T
ru

e
a

a
/

=
F

al
se

(i
n

ve
rs

e
)

D
e

M
o

rg
an

(d
o

u
b

le
n

o
t)

N
ti

l
U

i
it

A
lg

e
b

ra
s

al
lo

w
f

o
r

e
as

ie
r

re
as

o
n

in
g

t
h

an
t

ru
th

t
ab

le
s.

15

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ed

u
n
d
an

t
B

o
o
le

an
A

lg
eb

ra

0
-L

aw
s

/
-L

aw
s

a
a

0
=

a
a

a
/

=
a

(r
e

d
u

n
d

an
t)

a
b

0
=

b
a

0
a

b
/

=
b

a
/

(c
o

m
m

u
ta

ti
ve

)

a
b

c
0

0
^

h
=

a
b

c
0

0
^

h
a

b
c

/
/

^
h

=
a

b
c

/
/

^
h

(a
ss

o
ci

at
iv

e
)

a
a

b
0

/
^

h
=

a
a

a
b

/
0

^
h

=
a

(a
b

so
rp

ti
o

n
)

a
b

c
0

/
^

h
=

a

b
a

c
0

/
0

^
^

h
h

a
b

c
/

0
^

h
=

a

b
a

c
/

0
/

^
^

h
h

(d
is

tr
ib

u
ti

o
n

)

a
Fa

ls
e

0
=

a
T

ru
e

a
/

=
a

(i
d

e
n

ti
ty

)

a
T

ru
e

0
=

T
ru

e
a

Fa
ls

e
/

=
F

al
se

(c
o

n
st

an
t)

a
a

0
=

T
ru

e
a

a
/

=
F

al
se

(i
n

ve
rs

e
)

a
b

0
=

a
b

/
a

b
/

=
a

b
0

D
e

M
o

rg
an

a
=

a
(d

o
u

b
le

n
o

t)

(r
e

d
u

n
d

an
t)

(
d

d
t)


s

e
co

n
d

n
at

u
re

f
o

r
a

co
m

p
u

te
r

sc
ie

n
ti

st
!

13

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

A
xi

o
m

at
ic

B
o
o
le

an
A

lg
eb

ra
(

H
u
n
ti

n
gt

o
n
1

9
0
4
)

0

-L
aw

s
/

-L
aw

s
(r

e
d

u
n

d
an

t)

a
b

0
=

b
a

0
a

b
/

=
b

a
/

(c
o

m
m

u
ta

ti
ve

)

(a
ss

o
ci

at
iv

e
)

(a
b

so
rp

ti
o

n
)

a
b

c
0

/
^

h
=

a

b
a

c
0

/
0

^
^

h
h

a
b

c
/

0
^

h
=

a

b
a

c
/

0
/

^
^

h
h

(d
is

tr
ib

u
ti

o
n

)

a
Fa

ls
e

0
=

a
T

ru
e

a
/

=
a

(i
d

e
n

ti
ty

)

(c
o

n
st

an
t)

a
a

0
=

T
ru

e
a

a
/

=
F

al
se

(i
n

ve
rs

e
)

D
e

M
o

rg
an

(d
o

u
b

le
n

o
t)

18

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
F

F
F

F
F

F
T

F
F

T
F

T
F

T
T

F
T

F
F

T
T

F
T

T
T

T
F

T
T

T
T

F

16

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

C
o
m

m
o
n
B

o
o
le

an
o

p
er

at
o
rs

C
o

m
m

o
n

ly
u

se
d

o
p

e
ra

to
rs

o
n

e
xp

re
ss

io
n

s
a,

b
t

o
d

e
fi

n
e

b
o

o
le

an
a

lg
e

b
ra

s:

a

b
0

(a
k

a
a

b
+

o
r “

a
O

R
b


o

r
S

U
M

)

a
b

/

(a
k

a
a

b
$

o
r “

a
A

N
D

b

o
r

P
R

O
D

U
C

T
)

a

(a
k

a
a

J
o

r
al

o
r “

n
o

t
a”

)

O
th

e
r

h
an

d
y

o
p

e
ra

to
rs

:

a

b

=

a
b

0
^

h
(a

k
a

“a
I

M
P

LI
ES

b
”)

a
b

=
^

h
=

a

b
a

b
/

0
/

^
^

h
h

(a
k

a
“a

E
Q

U
A

LS
b

”)

a
b

5
=

a

b
a

b
/

0
/

^
^

h
h

(a
k

a
“a

E
X

C
LU

S
IV

E-
O

R
b


o

r
“a

X
O

R
b

”)

a
b

/
=

a

b
0

^
h

(a
k

a
“a

N
O

T-
A

N
D

b
”o

r “
a

N
A

N
D

b
”)

a

b
0

=

a
b

/
^

h
(a

k
a

“a
N

O
T-

O
R

b
”o

r “
a

N
O

R
b

”)

N
A

N
D

a
n

d
N

O
R

a
re

t
h

e
o

n
ly

s
o

le
s

u
ffi

c
ie

n
t

b
o

o
le

an
o

p
e

ra
to

rs
,

i.
e

. y
o

u
c

an
r

e
d

u
ce

a
n

y
b

o
o

le
an

e
xp

re
ss

io
n

t
o

o
n

ly
N

A
N

D
o

r
o

n
ly

N
O

R
o

p
e

ra
to

rs
.

19

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
m

in
te

rm
s

F
F

F
F

F
F

T
F

F
T

F
T

a
b

c
/

/

F
T

T
F

T
F

F
T

a
b

c
/

/

T
F

T
T

a
b

c
/

/

T
T

F
T

a
b

c
/

/

T
T

T
F

S
u

m
o

f
m

in
te

rm
s:

q
=

a

b
c

a
b

c
a

b
c

a
b

c
/

/
/

/
/

/
/

/
0

0
0

^
^

^
^

h
h

h
h

17

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

1
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

A
ll
b

in
ar

y
B

o
o
le

an
o

p
er

at
o
rs

In
p

u
ts

a
, b

Fu
n

ct
io

n
N

am
e

S
u

m
o

f
p

ro
d

u
ct

s
N

A
N

D
D

o
n

’t
c

ar
e

s
a

F
F

T
T

b
u

il
d

,

,
x

/
0

b
F

T
F

T

q

F
F

F
F

Fa
ls

e
C

o
n

st
an

t
FA

LS
E

a,
b

F
F

F
T

a
b

/
A

N
D

a
b

a
b

/
/

/

F
F

T
F

a
b


N

O
T-

IM
P

LI
C

A
T

IO
N

a
b

/
^

h
F

F
T

T
a

ID
EN

T
IT

Y
a

b
F

T
F

F
b

a

N
O

T-
IM

P
LI

C
A

T
IO

N

a
b

/
^

h
F

T
F

T
b

ID
EN

T
IT

Y
b

a
F

T
T

F
a

b
5

EX
C

LU
S

IV
E-

O
R

, X
O

R
a

b
a

b
/

0
/

^
^

h
h

F
T

T
T

a
b

0
O

R
a

a
b

b
/

/
/

T
F

F
F

a
b

0
N

O
T-

O
R

, N
O

R
a

b
/

^
h

T
F

F
T

a
b

=
EQ

U
A

LI
T

Y,
E

Q
a

a
b

b
0

/
/

^
^

h
h

T
F

T
F

b
IN

V
ER

S
E

b
a

T
F

T
T

b
a


IM

P
LI

C
A

T
IO

N
b

a
0

T
T

F
F

a
IN

V
ER

S
E

a
a

a
/

b
T

T
F

T
a

b

IM
P

LI
C

A
T

IO
N

a
b

0

T
T

T
F

a
b

/
N

O
T-

A
N

D
, N

A
N

D
a

b
0

T
T

T
T

Tr
u

e
C

o
n

st
an

t
Tr

u
e

a,
b

O
u

tp
u

t
q

22

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
F

F
F

F
F

F
T

F
F

T
F

T
F

T
T

F
T

F
F

T
T

F
T

T
T

T
F

T
T

T
T

F

20

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
m

in
te

rm
s

S
im

p
li

fi
e

d
m

in
te

rm
s

F
F

F
F

F
F

T
F

F
T

F
T

a
b

c
/

/

b
c

/

F
T

T
F

T
F

F
T

a
b

c
/

/
a

b
/

T
F

T
T

a
b

c
/

/

T
T

F
T

a
b

c
/

/

T
T

T
F

S
u

m
o

f
m

in
te

rm
s:

q
=

a

b
c

a
b

c
a

b
c

a
b

c
/

/
/

/
/

/
/

/
0

0
0

^
^

^
^

h
h

h
h

S
u

m
o

f
si

m
p

li
fi

e
d

m
in

te
rm

s:
q

=

a
b

b
c

/
0

/
^

^
h

h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

23

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
m

ax
te

rm
s

F
F

F
F

a
b

c
0

0

F
F

T
F

a
b

c
0

0

F
T

F
T

F
T

T
F

a
b

c
0

0

T
F

F
T

T
F

T
T

T
T

F
T

T
T

T
F

a
b

c
0

0

m
ax

te
rm

s
p

ro
d

u
ct

q
=

a

b
c

a
b

c
a

b
c

a
b

c
0

0
/

0
0

/
0

0
/

0
0

^
^

^
^

h
h

h
h

21

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
m

in
te

rm
s

S
im

p
li

fi
e

d
m

in
te

rm
s

F
F

F
F

F
F

T
F

F
T

F
T

a
b

c
/

/

b
c

/

F
T

T
F

T
F

F
T

a
b

c
/

/
a

b
/

T
F

T
T

a
b

c
/

/

T
T

F
T

a
b

c
/

/

T
T

T
F

S
u

m
o

f
m

in
te

rm
s:

q
=

a

b
c

a
b

c
a

b
c

a
b

c
/

/
/

/
/

/
/

/
0

0
0

^
^

^
^

h
h

h
h

S
u

m
o

f
si

m
p

li
fi

e
d

m
in

te
rm

s:
q

=

a
b

b
c

/
0

/
^

^
h

h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

Ev
e

ry
c

o
m

b
in

at
io

n
al

f
u

n
ct

io
n

c
an

b

e
w

ri
tt

e
n

a
s

a
su

m
o

f
p
ro

d
u
ct

s!

26

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
ig

it
al

E
le

ct
ro

n
ic

s

S
ym

b
o

li
c:

Q
A

B
/

=

E

le
m

e
n

ta
ry

l
o

g
ic

g
at

e
s

ym
b

o
ls

:

D
ia

g
ra

m
:

Te
ch

n
o

lo
g

y:

N
A

N
D

A B
Q

A B

Q

P
M

O
S

N
M

O
S

N
A

N
D

N
A

N
D

N
A

N
D

A
Q

N
A

N
D

N
A

N
D

N
A

N
D

Q

Q

A B A B

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

A B

Q

N
O
T

A
Q

O
R

Q
A B

Q
A B

A
N
D

X
O
R

A B
Q

≡ ≡ ≡ ≡

24

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
m

ax
te

rm
s

S
im

p
li

fi
e

d
m

ax
te

rm
s

F
F

F
F

a
b

c
0

0
a

b
0

F
F

T
F

a
b

c
0

0

F
T

F
T

F
T

T
F

a
b

c
0

0

b
c

0

T
F

F
T

T
F

T
T

T
T

F
T

T
T

T
F

a
b

c
0

0

m
ax

te
rm

s
p

ro
d

u
ct

q
=

a

b
c

a
b

c
a

b
c

a
b

c
0

0
/

0
0

/
0

0
/

0
0

^
^

^
^

h
h

h
h

si
m

p
li

fi
e

d
m

ax
te

rm
s

p
ro

d
u

ct
q

=

a
b

b
c

0
/

0
^

^
h

h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

27

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

T
h

e
l

o
g

ic
e

q
u

iv
al

e
n

t
to

p
u

re
f

u
n

ct
io

n
s:

t
h

e
re

a
re

n
o

s
ta

te
s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
M

in
te

rm
s

S
im

p
li

fi
e

d
m

in
te

rm
s

F
F

F
F

F
F

T
F

F
T

F
T

a
b

c
/

/

b
c

/

F
T

T
F

T
F

F
T

a
b

c
/

/
a

b
/

T
F

T
T

a
b

c
/

/

T
T

F
T

a
b

c
/

/

T
T

T
F

S
u

m
o

f
m

in
te

rm
s:

q
=

a

b
c

a
b

c
a

b
c

a
b

c
/
/

/
/

/
/

/
/

0
0

0
^

^
^

^
h

h
h

h
S

u
m

o
f

si
m

p
li

fi
e

d
m

in
te

rm
s:

q
=

a

b
b

c
/

0
/

^
^

h
h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

b
/

b
h

a b c

q

O
R
s

AN
D
s

25

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

L
o

g
ic

i
s

re
d

u
ci

b
le

/e
q

u
iv

al
e

n
t

to
p

u
re

f
u

n
ct

io
n

s:
t

h
e

re
a

re
n

o
s

ta
te

s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
m

ax
te

rm
s

S
im

p
li

fi
e

d
m

ax
te

rm
s

F
F

F
F

a
b

c
0
0

a
b

0
F

F
T

F
a

b
c

0
0

F
T

F
T

F
T

T
F

a
b

c
0
0

b
c

0

T
F

F
T

T
F

T
T

T
T

F
T

T
T

T
F

a
b

c
0
0

m
ax

te
rm

s
p

ro
d

u
ct

q
=

a

b
c

a
b

c
a

b
c

a
b

c
0
0

/
0
0

/
0
0

/
0
0

^
^

^
^

h
h

h
h

si
m

p
li

fi
e

d
m

ax
te

rm
s

p
ro

d
u

ct
q

=

a
b

b
c

0
/

0
^

^
h

h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

Ev
e

ry
c

o
m

b
in

at
io

n
al

f
u

n
ct

io
n

c
an

b

e
w

ri
tt

e
n

a
s

a
p
ro

d
u
ct

o
f

su
m

s!

30

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

P
ro

ce
ss

in
g

D
at

a

En
cr

yp
ti

n
g

a
b

it
v

e
ct

o
r

(w
h

at
e

ve
r

it
r

e
p

re
se

n
ts

)
w

it
h

a
s

e
cr

e
t

k
e

y:

A
ss

u
m

in
g

t
h

e
k

e
y

is
r

an
d

o
m

an

d
n

o
t

u
se

d
f

o
r

an
yt

h
in

g
e

ls
e

:

T
h

is
i

s
su

rp
ri

si
n

g
ly

s
e

cu
re


a

n
d

e
xt

re
m

e
ly

f
as

t!

D
0

XO
R

K
0

E 0

En
cr
yp
tio
n

XO
R

D
ec
ry
pt
io
n

D
0

D
1

XO
R

K
1

E 1
XO

R
D

1

D
2

XO
R

K
2

E 2
XO

R
D

2

D
3

XO
R

K
3

E 3
XO

R
D

3

D
4

XO
R

K
4

E 4
XO

R
D

4

D
5

XO
R

K
5

E 5
XO

R
D

5

D
6

XO
R

K
6

E 6
XO

R
D

6

D
7

XO
R

K
7

E 7
XO

R
D

7

28

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

T
h

e
l

o
g

ic
e

q
u

iv
al

e
n

t
to

p
u

re
f

u
n

ct
io

n
s:

t
h

e
re

a
re

n
o

s
ta

te
s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
M

in
te

rm
s

S
im

p
li

fi
e

d
m

in
te

rm
s

F
F

F
F

F
F

T
F

F
T

F
T

a
b

c
/

/

b
c

/

F
T

T
F

T
F

F
T

a
b

c
/

/
a

b
/

T
F

T
T

a
b

c
/

/

T
T

F
T

a
b

c
/

/

T
T

T
F

S
u

m
o

f
m

in
te

rm
s:

q
=

a

b
c

a
b

c
a

b
c

a
b

c
/
/

/
/

/
/

/
/

0
0

0
^

^
^

^
h

h
h

h
S

u
m

o
f

si
m

p
li

fi
e

d
m

in
te

rm
s:

q
=

a

b
b

c
/

0
/

^
^

h
h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

b
/

b
h

a b c

O
R
s

q

AN
D
s

31

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

B
it

V
ec

to
rs

G
ro

u
p

s
o

f
b

it
s

co
u

ld
r

e
p

re
se

n
t:

S
ta

te
s,

e
n

u
m

e
ra

ti
o

n
v

al
u

e
s,

a
rr

ay
s

o
f

B
o

o
le

an
s,

n
u

m
b

e
rs

, e
tc

. p
p

.

o
r

an
y

g
ro

u
p

in
g

o
r

co
m

b
in

at
io

n
o

f
th

e
a

b
o

ve

A
lg

eb
ra

ic
T

yp
es

T
h

e
f

o
rm

o
f

e
n

co
d

in
g

c
o

u
ld

b
e

c
h

o
se

n
t

o
o

p
ti

m
iz

e
f

o
r:


Pe

rf
o
rm

an
ce

e

.g
. m

in
im

al
d

e
co

d
in

g
e

ff
o

rt


R

ed
u
n
d
an

cy
/

e
rr

o
r

d
e

te
ct

io
n

e

.g
. l

ar
g

e
H

am
m

in
g

d
is

ta
n

ce


Sa

fe
t

ra
n
si

ti
o
n
s

e
.g

. G
ra

y
co

d
e

s


P
hy

si
ca

l
m

ap
p
in

g
e

.g
. m

ap
s

o
n

e
xi

st
in

g
h

ar
d

w
ar

e
i

n
te

rf
ac

e
s


C

o
m

p
ac

tn
es

s
e

.g
. h

o
ld

s
th

e
m

ax
im

al
n

u
m

b
e

r
o

f
va

lu
e

s
p

e
r

m
e

m
o

ry
c

e
ll

29

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

2
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
m

b
in

at
io

n
al

L
o
gi

c
Fu

n
ct

io
n
s

T
h

e
l

o
g

ic
e

q
u

iv
al

e
n

t
to

p
u

re
f

u
n

ct
io

n
s:

t
h

e
re

a
re

n
o

s
ta

te
s!

IF
t

h
e

f
u

n
ct

io
n

i
s

co
m

b
in

at
io

n
al

t
h

e
n

t
h

e
re

i
s

o
n

ly
o

n
e

o
u

tp
u

t
fo

r
an

y
co

m
b

in
at

io
n

o
f

in
p

u
ts

,
e

.g
. t

h
e

f
u

n
ct

io
n

c
an

b
e

w
ri

tt
e

n
o

u
t

as
a

t
ru

th
t

ab
le

:

a
b

c
O

u
tp

u
t

q
M

in
te

rm
s

S
im

p
li

fi
e

d
m

in
te

rm
s

F
F

F
F

F
F

T
F

F
T

F
T

a
b

c
/
/

b
c

/

F
T

T
F

T
F

F
T

a
b

c
/
/

a
b

/
T

F
T

T
a

b
c

/
/

T
T

F
T

a
b

c
/
/

T
T

T
F

S
u

m
o

f
m

in
te

rm
s:

q
=

a

b
c

a
b

c
a

b
c

a
b

c
/
/

/
/

/
/

/
/

0
0

0
^

^
^

^
h

h
h

h
S

u
m

o
f

si
m

p
li

fi
e

d
m

in
te

rm
s:

q
=

a

b
b

c
/

/
0

^
^

h
h

S
im

p
li

fi
ca

ti
o

n
s

ca
n

b
e

d
o

n
e

b
y

(a
u

to
m

at
e

d
)

al
g

e
b

ra
ic

t
ra

n
sf

o
rm

at
io

n
s,

K
ar

n
au

g
h

m
ap

s
o

r
o

th
e

rs

b
/

b
h

a b c

O
R
s

q

AN
D
s

co
m

b
in

at
io

n
o

f
in

p
u

ts
,

T
h

e
n

u
m

b
e

r
o

f
te

rm
s

(“
fa

n
-i

n

fo
r

th
e

g
at

e
s)

in

fl
u

e
n

ce
s

th
e

t
o

ta
l d

e
la

y

34

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

B
in

ar
y

en
co

d
in

g

E
n

co
d

in
g

o
f

ch
o

ic
e

i
f

co
m

p
ac

tn
e

ss
i

s
e

ss
e

n
ti

al
o

r
yo

u
n

e
e

d
t

o
a

d
d

v
al

u
e

s.

0
0

1
0

1
0

1
0 *2

0
*2

1
*2

2
*2

3
*2

4
*2

5
*2

6
*2

7

32
8

2
+

+
=

4
2

0
0

0
0

0
=

0
0

0
1

1
=

0
0

1
0

2
=

0
0

1
1

3
=

0
1

0
0

4
=

0
1

0
1

5
=

0
1

1
0

6
=

0
1

1
1

7
=

1
0

0
0

8
=

1
0

0
1

9
=

1
0

1
0

A
=

1
0

1
1

B
=

1
1

0
0

C
=

1
1

0
1

D
=

1
1

1
0

E
=

1
1

1
1

F
=

B
in

ar
y

H
e

xa
d

e
ci

m
al

D
e

ci
m

al = = = = = = = = = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 1
1

12 13 14 15

32

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

En
co

d
in

g
A

ss
u

m
in

g
a

t
yp

e
c

an
h

av
e

7
d

if
fe

re
n

t
va

lu
e

s,
m

an
y

fo
rm

s
o

f
e

n
co

d
in

g
a

re
p

o
ss

ib
le

:

En
u

m
e

ra
ti

o
n

t
yp

e
En

co
d

in
g

1-
b

it
e

rr
o

r
d

e
te

ct
in

g
1-

b
it

e
rr

o
r

co
rr

e
ct

in
g

In
d

e
x

V
al

u
e

S
in

g
le

b
it

G
ra

y
co

d
e

Ev
e

n

p
ar

it
y

H
am

m
in

g

(7
,4

)
H

am
m

in
g

(3
,1

)
B

in
ar

y

1
S

e
cu

re
d

00
00

00
1

00
0

00
00

00
00

00
0

00
00

00
00

0
00

0

2
Ta

xi
00

00
01

0
00

1
00

11
11

10
00

0
00

00
00

11
1

00
1

3
Ta

k
e

-o
ff

00
00

10
0

01
1

01
01

10
01

10
0

00
01

11
00

0
01

0

4
C

ru
is

in
g

00
01

00
0

01
0

01
10

01
11

10
0

00
01

11
11

1
01

1

5
G

li
d

in
g

00
10

00
0

11
0

10
01

01
01

01
0

11
10

00
00

0
10

0

6
A

p
p

ro
ac

h
01

00
00

0
11

1
10

10
10

11
01

0
11

10
00

11
1

10
1

7
La

n
d

in
g

10
00

00
0

10
1

11
00

11
00

11
0

11
11

11
00

0
11

0

V
H

D
L

o
r

V
e

ri
lo

g
g

iv
e

s
yo

u
f

u
ll

c
o

n
tr

o
l

o
ve

r
th

e
e

n
co

d
in

g
.

35

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

B
in

ar
y

en
co

d
in

g

E
n

co
d

in
g

o
f

ch
o

ic
e

i
f

co
m

p
ac

tn
e

ss
i

s
e

ss
e

n
ti

al
o

r
yo

u
n

e
e

d
t

o
a

d
d

v
al

u
e

s.

0
0

1
0

1
0

1
0 *2

0
*2

1
*2

2
*2

3
*2

4
*2

5
*2

6
*2

7

32
8

2
+

+
=

4
2

0
0

0
0

0
=

0
0

0
1

1
=

0
0

1
0

2
=

0
0

1
1

3
=

0
1

0
0

4
=

0
1

0
1

5
=

0
1

1
0

6
=

0
1

1
1

7
=

1
0

0
0

8
=

1
0

0
1

9
=

1
0

1
0

A
=

1
0

1
1

B
=

1
1

0
0

C
=

1
1

0
1

D
=

1
1

1
0

E
=

1
1

1
1

F
=

B
in

ar
y

H
e

xa
d

e
ci

m
al

D
e

ci
m

al = = = = = = = = = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 1
1

12 13 14 15

2
A

*1
60

32
10

+
=

4
2

*1
61

33

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

B
in

ar
y

en
co

d
in

g

E
n

co
d

in
g

o
f

ch
o

ic
e

i
f

co
m

p
ac

tn
e

ss
i

s
e

ss
e

n
ti

al
o

r
yo

u
n

e
e

d
t

o
a

d
d

v
al

u
e

s.

0
0

1
0

1
0

1
0 *2

0
*2

1
*2

2
*2

3
*2

4
*2

5
*2

6
*2

7

32
8

2
+

+
=

4
2

38

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

H
al

f
A

d
d
er

A
B

S
C

S
m

in
te

rm
s

C
m

in
te

rm
s

0
0

0
0

0
1

1
0

A
B

/

1
0

1
0

A
B

/

1
1

0
1

A
B

/

S
=

A

B
A

B
/

0
/

^
^

h
h

=
A

B
5

C
=

A
B

/

36

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

H
al

f
A

d
d
er

A
B

S
C

S
m

in
te

rm
s

C
m

in
te

rm
s

0
0

0
0

0
1

1
0

A
B

/

1
0

1
0

A
B

/

1
1

0
1

A
B

/

39

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

H
al

f
A

d
d
er

A
B

S
C

S
m

in
te

rm
s

C
m

in
te

rm
s

0
0

0
0

0
1

1
0

A
B

/

1
0

1
0

A
B

/

1
1

0
1

A
B

/

S
=

A

B
A

B
/

0
/

^
^

h
h

=
A

B
5

C
=

A
B

/
A

XO
R

AN
D

B

S C

37

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

3
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

H
al

f
A

d
d
er

A
B

S
C

S
m

in
te

rm
s

C
m

in
te

rm
s

0
0

0
0

0
1

1
0

A
B

/

1
0

1
0

A
B

/

1
1

0
1

A
B

/

S
=

A

B
A

B
/

0
/

^
^

h
h

C
=

A
B

/

42

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

Fu
ll
A

d
d
er

A
i

B
i
C
i

1

S
i
C
i

S
i m

in
te

rm
s

C
i m

in
te

rm
s

0
0

0
0

0
0

1
0

1
0

A
B

C
i

i
i

1
/

/

1
0

0
1

0
A

B
C

i
i

i
1

/
/


1

1
0

0
1

A
B

C
i

i
i

1
/

/

0
0

1
1

0
A

B
C

i
i

i
1

/
/


0

1
1

0
1

A
B

C
i

i
i

1
/

/

1
0

1
0

1
A

B
C

i
i

i
1

/
/


1

1
1

1
1

A
B

C
i

i
i

1
/

/

A
B

C
i

i
i

1
/

/

S
i =

A

B
C

A
B

C
A

B
C

A
B

C
i

i
i

i
i

i
i

i
i

i
i

i
1

1
1

1
/

/
0

/
/

0
/

/
0

/
/



_
_

_
^

i
i

i
h

=

A
B

A
B

C
A

B
A

B
C

i
i

i
i

i
i

i
i

i
i

1
1

/
/

/
0

/
/

/
0

0


__
^

_
__
_

^
h

ii
i

i
hi

i

=

A

B
C

A
B

C
i

i
i

i
i

i
1

1
5

/
0

/
=


_ ^
^^

h
i

h
h =

A

B
C

A
B

C
i

i
i

i
i

i
1

1
5

/
0

/
5


_ ^
__

h
i

i
i

=
A

B
C

i
i

i
1

5
5


^

h

40

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

Fu
ll
A

d
d
er

A
i

B
i
C
i

1

S
i
C
i

0
0

0
0

0
0

1
0

1
0

1
0

0
1

0
1

1
0

0
1

0
0

1
1

0
0

1
1

0
1

1
0

1
0

1
1

1
1

1
1

43

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

Fu
ll
A

d
d
er

A
i

B
i
C
i

1

S
i
C
i

S
i m

in
te

rm
s

C
i m

in
te

rm
s

0
0

0
0

0
0

1
0

1
0

A
B

C
i

i
i

1
/

/

1
0

0
1

0
A

B
C

i
i

i
1

/
/


1

1
0

0
1

A
B

C
i

i
i

1
/

/

0
0

1
1

0
A

B
C

i
i

i
1

/
/


0

1
1

0
1

A
B

C
i

i
i

1
/

/

1
0

1
0

1
A

B
C

i
i

i
1

/
/


1

1
1

1
1

A
B

C
i

i
i

1
/

/

A
B

C
i

i
i

1
/

/

S
i =

A
B

C
i

i
i

1
5

5

^
h

C
i =

A

B
C

A
B

C
A

B
C

A
B

C
i

i
i

i
i

i
i

i
i

i
i

i
1

1
1

1
/

/
0

/
/

0
/

/
0

/
/



_
_

^
^

i
i

h
h

41

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

Fu
ll
A

d
d
er

A
i

B
i
C
i

1

S
i
C
i

S
i m

in
te

rm
s

C
i m

in
te

rm
s

0
0

0
0

0
0

1
0

1
0

A
B

C
i

i
i

1
/

/

1
0

0
1

0
A

B
C

i
i

i
1

/
/


1

1
0

0
1

A
B

C
i

i
i

1
/

/

0
0

1
1

0
A

B
C

i
i

i
1

/
/


0

1
1

0
1

A
B

C
i

i
i

1
/

/

1
0

1
0

1
A

B
C

i
i

i
1

/
/


1

1
1

1
1

A
B

C
i

i
i

1
/

/

A
B

C
i

i
i

1
/

/

S
i =

A

B
C

A
B

C
A

B
C

A
B

C
i

i
i

i
i

i
i

i
i

i
i

i
1

1
1

1
/

/
0

/
/

0
/

/
0

/
/



_
_

_
^

i
i

i
h

46

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

R
ip

p
le

C
ar

ry
A

d
d
er

2
+

2
=

4
?

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

44

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

Fu
ll
A

d
d
er

A
i

B
i
C
i

1

S
i
C
i

S
i m

in
te

rm
s

C
i m

in
te

rm
s

0
0

0
0

0
0

1
0

1
0

A
B

C
i

i
i

1
/

/

1
0

0
1

0
A

B
C

i
i

i
1

/
/


1

1
0

0
1

A
B

C
i

i
i

1
/

/

0
0

1
1

0
A

B
C

i
i

i
1

/
/


0

1
1

0
1

A
B

C
i

i
i

1
/

/

1
0

1
0

1
A

B
C

i
i

i
1

/
/


1

1
1

1
1

A
B

C
i

i
i

1
/

/

A
B

C
i

i
i

1
/

/

S
i =

A
B

C
i

i
i

1
5

5

^
h

C
i =

A

B
C

A
B

C
A

B
C

A
B

C
i

i
i

i
i

i
i

i
i

i
i

i
1

1
1

1
/

/
0

/
/

0
/

/
0

/
/



_
_

^
^

i
i

h
h

=

A

B
C

A
B

C
A

B
C

A
B

C
i

i
i

i
i

i
i

i
i

i
i

i
1

1
1

1
/

/
/

/
0

/
/

0
/

/
0



_
^

_
^

i
h

i
h

=
A

B
A

B
A

B
C

i
i

i
i

i
i

i
1

/
0

/
/

/
0


^

__
_

^
h

i
h i

i

=
A

B
A

B
C

i
i

i
i

i
1

/
0

5
/


^

^^
h

h
h

47

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ip

p
le

C
ar

ry
A

d
d
er

2
+

2
=

4
!

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

45

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

Fu
ll
A

d
d
er

A
i

B
i
C
i

1

S
i
C
i

S
i m

in
te

rm
s

C
i m

in
te

rm
s

0
0

0
0

0
0

1
0

1
0

A
B

C
i

i
i

1
/

/

1
0

0
1

0
A

B
C

i
i

i
1

/
/


1

1
0

0
1

A
B

C
i

i
i

1
/

/

0
0

1
1

0
A

B
C

i
i

i
1

/
/


0

1
1

0
1

A
B

C
i

i
i

1
/

/

1
0

1
0

1
A

B
C

i
i

i
1

/
/


1

1
1

1
1

A
B

C
i

i
i

1
/

/

A
B

C
i

i
i

1
/

/

S
i =

A
B

C
i

i
i

1
5

5

^
h

C
i =

A
B

A
B

C
i

i
i

i
i

1
/

0
5

/

^
^^

h
h

h

A
i

XO
R

AN
D

B
i

XO
R

AN
D

O
R

S
i

C
i-

1
C

i

50

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

R
ad

ix
c

o
m

p
le

m
en

ts
C

an
w

e
d

e
fi

n
e

n
e

g
at

iv
e

n
u

m
b

e
rs

s
u

ch
t

h
at

o
u

r
ad

d
e

r
st

il
l

w
o

rk
s?

x
x

0

=

O
r:

w
h

at
c

an
y

o
u

a
d

d
t

o
4

2
in

a
n

8
b

it
b

in
ar

y
re

p
re

se
n

ta
ti

o
n

su

ch
t

h
at

t
h

e
r

e
su

lt
w

il
l

b
e

2
8

(a
n

d
h

e
n

ce
0

i
n

8
b

it
s)

?

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
0

+ =

0
0

0
0

0
0

0
0

1

4
2

-4
2

2
5
6

48

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

R
ip

p
le

C
ar

ry
A

d
d
er

2

1
=

1
?

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

51

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ad

ix
c

o
m

p
le

m
en

ts
C

an
w

e
d

e
fi

n
e

n
e

g
at

iv
e

n
u

m
b

e
rs

s
u

ch
t

h
at

o
u

r
ad

d
e

r
st

il
l

w
o

rk
s?

x
x

0

=

O
r:

w
h

at
c

an
y

o
u

a
d

d
t

o
4

2
in

a
n

8
b

it
b

in
ar

y
re

p
re

se
n

ta
ti

o
n

su

ch
t

h
at

t
h

e
r

e
su

lt
w

il
l

b
e

2
8

(a
n

d
h

e
n

ce
0

i
n

8
b

it
s)

?

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
0

+ =

0
0

0
0

0
0

0
0

1

4
2

-4
2

2
5
6

“I
n

ve
rt

a
ll

b
it

s
an

d
a

d
d

1

2
’s

-c
o
m

p
le

m
en

t

(a
s

th
e

ra

d
ix

/b
as

e
i

s
2)

49

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

4
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ad

ix
c

o
m

p
le

m
en

ts
C

an
w

e
d

e
fi

n
e

n
e

g
at

iv
e

n
u

m
b

e
rs

s
u

ch
t

h
at

o
u

r
ad

d
e

r
st

il
l

w
o

rk
s?

x
x

0

=

O
r:

w
h

at
c

an
y

o
u

a
d

d
t

o
4

2
in

a
n

8
b

it
b

in
ar

y
re

p
re

se
n

ta
ti

o
n

su

ch
t

h
at

t
h

e
r

e
su

lt
w

il
l

b
e

2
8

(a
n

d
h

e
n

ce
0

i
n

8
b

it
s)

?

0
0

1
0

1
0

1
0

?
?

?
?

?
?

?
?

+ =

0
0

0
0

0
0

0
0

1

4
2

-4
2

2
5
6

54

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

R
ip

p
le

C
ar

ry
A

d
d
er

2

1
=

1
?

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

52

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

2
’s

c
o
m

p
le

m
en

ts

T
h

e
2

’s
c

o
m

p
le

m
e

n
t

e
n

co
d

in
g

i
n

te
rp

re
ts

th

e
n

at
u

ra
l

b
in

ar
y

ra
n

g
e

2
n

1


2

1
n

as
n

e
g

at
iv

e
n

u
m

b
e

rs

2
n

1


1

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
0

… …
000

000000
111

000000
111

000000
111

000

000
111


111

000000
111

000000
111

111
000000

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
0

2
n
-1

-1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1

0
0

0
1

0
1

0
1

0

1
0

0
0

0
0

0
0

-2
n
-1

N
at

u
ra

l
b
in

ar
y

n
u
m

b
er

s

2
‘s

c
o
m

p
le

m
en

t
b
in

ar
y

n
u
m

b
er

s

2
n
-1

55

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ip

p
le

C
ar

ry
A

d
d
er

2

1
=

1
!


w

it
h

a
n

o
ve

ra
ll

c
ar

ry
-fl

a
g

i
n

d
ic

at
e

d
.

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

53

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

2
’s

c
o
m

p
le

m
en

ts

T
h

e
2

’s
c

o
m

p
le

m
e

n
t

e
n

co
d

in
g

i
n

te
rp

re
ts

th

e
n

at
u

ra
l

b
in

ar
y

ra
n

g
e

2
n

1


2

1
n

as
n

e
g

at
iv

e
n

u
m

b
e

rs

2
n

1


1

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
0

… …
000

000000
111

000000
111

000000
111

000
……

000
111


111

000000
111

000000
111

111
000000

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
0

2
n
-1

-1
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1

0
0

0
1

0
1

0
1

0

1
0

0
0

0
0

0
0

-2
n
-1

N
at

u
ra

l
b
in

ar
y

n
u
m

b
er

s

2
‘s

c
o
m

p
le

m
en

t
b
in

ar
y

n
u
m

b
er

s

2
n
-1

It
’s

a
ll

in
y

o
u

r
m

in
d

!

58

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

A
ri

th
m

et
ic

L
o
gi

c
U

n
it

(
A

LU
)

A
i

XO
R

AN
D

B
i

XO
R

AN
D

O
R

S
i

C
i-

1
C

i

AN
D

AN
D

AN
D

AN
D

O
R

O
R

O
P

1-
4

R
e

su
lt

i

AN
D

AN
D

AN
D

AN
D

O
P

1
(A

D
D

)

O
P

2
(X

O
R

)

O
P

3
(A

N
D

)

O
P

4
(O

R
)

IN
S

T
R

A
LU

S
li

ce
i

A
LU

In

st
ru

ct
io

n
D

e
co

d
e

r

A
s

im
p

le
A

LU
w

h
ic

h
c

an
A

D
D

, X
O

R
, A

N
D

, O
R

t
w

o
a

rg
u

m
e

n
ts

.

56

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

R
ip

p
le

C
ar

ry
A

d
d
er

H
o

w
lo

n
g

d
o

e
s

it
t

ak
e

u
n

ti
l t

h
e

la

st
c

ar
ry

fl
a

g
st

ab
ili

ze
s

?

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

59

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

To
w

ar
d
s

St
at

es
(e

ve
ry

th
in

g
u

p
t

o
h

e
re

w
as

c
o

m
b

in
at

io
n

al
l

o
g

ic
)

H
o

w
d

o
w

e
m

ak
e

o
p

e
ra

ti
o

n
s

d
e

p
e

n
d

s
o

n
:


a

n
o

ve
rfl

o
w

i
n

t
h

e
p

re
vi

o
u

s
o

p
e

ra
ti

o
n

?


t

h
e

s
ta

te
o

f
th

e
C

P
U

?


a

c
o

u
n

te
r

h
av

in
g

r
e

ac
h

e
d

z
e

ro
?


t

w
o

a
rg

u
m

e
n

ts
h

av
in

g
b

e
e

n
e

q
u

al
?


e

tc
. p

p
.

W
e

n
e

e
d

t
o

h
o

ld
o

n
t

o
s

o
m

e
s

ta
te

s!

57

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

5
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
ip

p
le

C
ar

ry
A

d
d
er

W
h

at
d

is
ti

n
gu

is
h

e
s

th
e

r
e

d
f

ro
m

t
h

e
g

re
e

n
g

at
e

s
?

A
1

XO
R

AN
D

B
1

XO
R

AN
D

O
R

S
1

A
2

XO
R

AN
D

B
2

XO
R

AN
D

O
R

S
2

C
1

C
2

A
0

XO
R

AN
D

B
0

S
0 C

0

C
ar

ry
-l

o
o

k
ah

e
ad

c
ir

cu
it

ry

62

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

St
at

es


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

S
R

Q
Q

0
0

?
?

0
1

?
?

1
0

?
?

1
1

Q
Q

60

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

St
at

es


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

S
R

Q
Q

0
0

?
?

0
1

?
?

1
0

?
?

1
1

?
?

63

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

St
at

es


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

S
R

Q
Q

0
0

?
?

0
1

1
0

1
0

?
?

1
1

Q
Q

61

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

St
at

es


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

S
R

Q
Q

0
0

?
?

0
1

?
?

1
0

?
?

1
1

Q
Q

66

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

St
at

es


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

S
R

Q
Q

0
0

Fo
rb

id
d

e
n

0
1

1
0

1
0

0
1

1
1

Q
Q

“S
-R

F
li

p
-F

lo
p

64

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

St
at

es


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

S
R

Q
Q

0
0

?
?

0
1

1
0

1
0

0
1

1
1

Q
Q

67

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
er

iv
in

g
SR

F
li
p
F

lo
p
s

S
R

Q
Q

0
0

0
*

0
0

1
*

0
1

0
1

0
1

1
1

1
0

0
0

1
0

1
0

1
1

0
0

1
1

1
1

65

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

St
at

es

N
A

N
D

N
A

N
D


Q Q

N
A

N
D

N
A

N
D

N
A

N
D

Q

N
A

N
D

Q

S R

S R

N
A

N
D

N
A

N
D

S
R

Q
Q

0
0

½
½

0
1

1
0

1
0

0
1

1
1

Q
Q

A
ss

u
m

in
g

Q
a

s
w

e
ll

a
s
Q

to

b
e

a
ct

iv
e

s
im

u
lt

an
e

o
u

sl
y

m
ay

l
e

ad
t

o
i

n
st

ab
il

it
y.

70

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
er

iv
in

g
SR

F
li
p
F

lo
p
s

S
R

Q
Q

Q
m

in
te

rm
s

S
im

p
li

fi
e

d
0

0
0

*
S

R
Q

/
/

S
0

0
1

*
S

Q
R

/
/

0
1

0
1

S
R

Q
/

/

0
1

1
1

S
R

Q
/

/

R
Q

/

1
0

0
0

1
0

1
0

1
1

0
0

1
1

1
1

S
R

Q
/

/

Q
=

S
R

Q
0

/
^

h =
S

R
Q

/
/

68

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
er

iv
in

g
SR

F
li
p
F

lo
p
s

S
R

Q
Q

Q
m

in
te

rm
s

0
0

0
*

S
R

Q
/

/

0
0

1
*

S
Q

R
/

/

0
1

0
1

S
R

Q
/

/

0
1

1
1

S
R

Q
/

/

1
0

0
0

1
0

1
0

1
1

0
0

1
1

1
1

S
R

Q
/

/

71

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
er

iv
in

g
SR

F
li
p
F

lo
p
s

S
R

Q
Q

Q
m

in
te

rm
s

S
im

p
li

fi
e

d
0

0
0

*
S

R
Q

/
/

S
0

0
1

*
S

Q
R

/
/

0
1

0
1

S
R

Q
/

/

0
1

1
1

S
R

Q
/

/

R
Q

/

1
0

0
0

1
0

1
0

1
1

0
0

1
1

1
1

S
R

Q
/

/

Q
=

S
R

Q
0

/
^

h =
S

R
Q

/
/


Q Q

N
A

N
D

Q

N
A

N
D

Q

S R

S R

69

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

6
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
er

iv
in

g
SR

F
li
p
F

lo
p
s

S
R

Q
Q

Q
m

in
te

rm
s

S
im

p
li

fi
e

d
0

0
0

*
S

R
Q

/
/

S
0

0
1

*
S

Q
R

/
/

0
1

0
1

S
R

Q
/

/

0
1

1
1

S
R

Q
/

/

R
Q

/

1
0

0
0

1
0

1
0

1
1

0
0

1
1

1
1

S
R

Q
/

/

Q
=

S
R

Q
0

/
^

h

74

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

72

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

75

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

73

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

78

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

76

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

79

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

77

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

7
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

D
F

li
p
-F

lo
p

D
Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

DC

Q Q

C

S RS
e

t
p

re
-l

at
ch

R
e

se
t

p
re

-l
at

ch

82

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C80

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C

83

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C

M
as

te
r

is
r

e
se

t
o

n
t

h
e

r
is

in
g

c
lo

ck
e

d
g

e

81

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C

86

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C

S
la

ve
f

o
ll

o
w

s
o

n
t

h
e

f
al

li
n

g
c

lo
ck

e
d

g
e

S
la

ve
f

S
l

T
h

e
d

e
co

u
p

li
n

g
b

e
tw

e
e

n

th
e

t
w

o
s

ta
g

e
s

m
ak

e
s

th
is

fl

ip
-fl

o
p

r
ac

e
f

re
e


e

ve
n

in

J
K

-t
o

g
g

le
m

o
d

e
.

84

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C

87

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
7

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

R
eg

is
te

r

D
0

Q
0

D

C

D
1

Q
1

D

D
2

Q
2

D

D
3

Q
3

D

D
4

Q
4

D

D
5

Q
5

D

D
6

Q
6

D

D
7

Q
7

D

C
o

u
ld

s
e

rv
e

a
s

a
g

e
n

e
ri

c,
f

as
t

st
o

ra
g

e
i

n
si

d
e

t
h

e
C

P
U

(
g

e
n

e
ra

l
re

g
is

te
r)

O
r

to
h

o
ld

i
n

te
rn

al
s

ta
te

s
(e

.g
. A

LU
o

ve
rfl

o
w

)
o

f
th

e
C

P
U

w

h
ic

h
a

re
u

se
d

b
y

e
.g

. b
ra

n
ch

in
g

i
n

st
ru

ct
io

n
s.

85

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

M
as

te
r-

Sl
av

e
JK

F
li
p
-F

lo
p

M
as

te
r

S
la

ve
S

la
M

as
MM

as

N
A

N
D

N
A

N
D

Q Q

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
O
T

S R

J K C

J K

Q Q

S R

C

S
la

ve
f

o
ll

o
w

s
o

n
t

h
e

f
al

li
n

g
c

lo
ck

e
d

g
e

90

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
0

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

Si
m

p
le

C
P
U

A
rc

h
it

ec
tu

re

Y
o

u
c

an
a

lr
e

ad
y

b
u

il
d

m
o

st
o

f
th

e

co
m

p
o

n
e

n
ts

o
f

a
C

P
U

b
y

n
o

w
.

(T
h

e
m

o
st

e
ss

e
n

ti
al

m
is

si
n

g
c

o
m

p
o

n
e

n
t

is
t

h
e

se

q
u

en
ce

r
w

h
ic

h
i

s
a

sp
e

ci
al

iz
e

d
s

ta
te

-m
ac

h
in

e
.)

W
e

w
il

l
co

m
e

b
ac

k
t

o
t

h
e

C
P

U
a

rc
h

it
e

ct
u

re
s

to
w

ar
d

s
th

e
e

n
d

o
f

th
e

c
o

u
rs

e
.

T

h
e

n
e

xt
c

h
ap

te
r

w
il

l
b

e
a

b
o

u
t

p
ro

g
ra

m
m

in
g

a
C

P
U

a
t

m
ac

h
in

e
l

e
ve

l.

A

LU

Memory

Se
qu

en
ce

r
D

ec
o
de

r

C
o
de

m
an

ag
em

en
t

R
eg

is
te

rs

IP SP

Fl
ag

s

D
at

a
m

an
ag

em
en

t

88

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
8

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

To
gg

le
F

li
p
-F

lo
p

Q Q

D
Q Q

S R

J K

Q Q

S R


S R

J K

Q Q

S R

D C
T

Q Q

J K

Q Q

S R

T C

T
Q Q

D
Q Q

XO
R

T C

J
Q Q

D
Q Q

C
K

AN
D

O
R

AN
D

J K

S R

S R

To
g

g
le

F
li

p
-F

lo
p

s
ch

an
g

e
s

ta
te

w
it

h
e

ve
ry

c
lo

ck
c

yc
le

.

91

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
1

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

ST
M

3
2
L4

7
6
D

is
co

ve
ry

89

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

8
9

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

C
o
u
n
te

r

T
S R

T
S R

T
S R

T
S R

T
S R

T
S R

T
S R

T
S R

1

C

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

R

Q
0

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1
1

1
1

1
1

1

Y
o

u
r

co
n

tr
o

ll
e

r
h

as
m

an
y

co
u

n
te

rs
w

h
ic

h
c

an

e
.g

. b
e

u
se

d
t

o
d

e
la

y
o

p
e

ra
ti

o
n

s
w

it
h

o
u

t
th

e

n
e

e
d

t
o

e
xe

cu
te

i
n

st
ru

ct
io

n
s.

94

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
4

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

ST
M

3
2
L4

7
6
D

is
co

ve
ry

C
u

rr
e

n
t

m
e

te
r

to
M

C
U

6
0

n
A


5

0
m

A

U
R

Z
i

Th

H
e

ad
p

h
o

n
e

j
ac

k U
S

B
O

T
G

M
u

lt
ip

le
xe

d
2

4
b

it
R
D

-D
A

C
o

n
ve

rt
e

r
w

it
h

st

e
re

o
p

o
w

e
r

am
p

M
ic

ro
p

h
o

n
e

“9
a

xi
s”

m
o

ti
o

n
s

e
n

so
r

(u
n

d
e

rn
e

at
h

d
is

p
la

y)
:

3
ax

is
a

cc
e

le
ro

m
e

te
r

3
ax

is
g

yr
o

sc
o

p
e

3
ax

is
m

ag
n

e
to

m
e

te
r

92

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
2

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

ST
M

3
2
L4

7
6
D

is
co

ve
ry

M
ai

n
M

C
U

D
e

b
u

g
g

e
r

M
C

U

D
is

p
la

y
M

C
U

95

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
5

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

ST
M

3
2
L4

7
6
D

is
co

ve
ry

T
h

e
re

i
s

a
lo

t
m

o
re

h
ar

d
w

ar
e

h

e
re

t
h

an
y

o
u

c
o

u
ld

p
o

ss
ib

ly

m
as

te
r

in
o

n
e

s
e

m
e

st
e

r


a

n
d

y
o

u
w

il
l

m
as

te
r

a
lo

t
m

o
re

a
b

o
u

t
C

P
U

s
at

t
h

e
e

n
d

t
h

e

co
u

rs
e

t
h

an
y

o
u

t
h

in
k

n
o

w
.

93

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
3

o
f

4
8

1
(
ch

ap
te

r
1

:
“D

ig
it

al
L

o
gi

c”
u

p
t

o
p

ag
e

9
6

)

ST
M

3
2
L4

7
6
D

is
co

ve
ry

LC
D

Jo
ys

ti
ck

R
e

se
t

O
T

G
L

ED
s

Po
w

e
r

D
e

b
u

g
g

e
r

st
at

e

U
se

r
LE

D
s

O
ve

r
cu

rr
e

n
t

96

D
ig

it
al

L
o

g
ic

©
2

0
2

1
U

w
e

R
.

Z
im

m
er

, T
h

e
A

u
st

ra
li

an
N

at
io

n
al

U
n

iv
er

si
ty

p

ag
e

9
6

o
f

4
8

1
(

ch
ap

te
r

1
:

“D
ig

it
al

L
o

gi
c”

u
p

t
o

p
ag

e
9

6
)

D
ig

it
al

L
o

gi
c


B

o
o
le

an
A

lg
eb

ra


Tr

u
th

t
ab

le
s

an
d

B
o

o
le

an
o

p
e

ra
ti

o
n

s


M

in
te

rm
s

an
d

s
im

p
li

fy
in

g
e

xp
re

ss
io

n
s


C

o
m

b
in

at
io

n
al

L
o
gi

c


Lo

g
ic

g
at

e
s


N

u
m

b
e

rs


A

d
d

e
rs

, A
LU


St

at
e-

o
ri

en
te

d
L

o
gi

c


Fl

ip
-F

lo
p

s,
r

e
g

is
te

rs
a

n
d

c
o

u
n

te
rs


C

P
U

A
rc

h
it

ec
tu

re

Su
m

m
ar

y