COPE-02 Hardware-Software Interface.indd
10
9
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
9
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
6
4
b
it
A
d
d
it
io
n
,
Su
b
tr
ac
ti
o
n
A
s
yo
u
r
re
g
is
te
rs
a
re
3
2
b
it
w
id
e
, y
o
u
n
e
e
d
t
w
o
s
te
p
s
to
a
d
d
t
w
o
6
4
b
it
n
u
m
b
e
rs
i
n
r
3
:r
2
, r
5
:r
4
(
w
it
h
r
2
a
n
d
r
4
b
e
in
g
t
h
e
l
o
w
e
r
32
b
it
s)
t
o
o
n
e
6
4
b
it
n
u
m
b
e
r
in
r
1
:r
0
:
a
d
d
s
r
0
,
r
2
,
r
4
;
r
0
:
=
r
2
+
r
4
a
d
d
l
e
a
s
t
s
i
g
n
i
f
i
c
a
n
t
w
o
r
d
s
,
s
e
t
f
l
a
g
s
a
d
c
s
r
1
,
r
3
,
r
5
;
r
1
:
=
r
3
+
r
5
+
C
a
d
d
m
o
s
t
s
i
g
n
i
f
i
c
a
n
t
w
o
r
d
s
a
n
d
c
a
r
r
y
b
i
t
…
a
n
d
s
ym
m
e
tr
ic
al
ly
i
f
yo
u
n
e
e
d
a
6
4
b
it
s
u
b
tr
ac
ti
o
n
:
s
u
b
s
r
0
,
r
2
,
r
4
;
r
0
:
=
r
2
–
r
4
l
e
a
s
t
s
i
g
n
i
f
i
c
a
n
t
w
o
r
d
s
,
s
e
t
f
l
a
g
s
s
b
c
s
r
1
,
r
3
,
r
5
;
r
1
:
=
r
3
–
r
5
–
N
O
T
(
C
)
m
o
s
t
s
i
g
n
i
f
i
c
a
n
t
w
o
r
d
s
a
n
d
c
a
r
r
y
b
i
t
10
5
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
5
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
3
2
b
it
a
d
d
i
n
st
ru
ct
io
n
s
a
d
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
a
d
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
a
d
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
a
d
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
q
a
d
d
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
s
: s
et
s
th
e
fl
ag
s
b
as
e
d
o
n
t
h
e
r
e
su
lt
c
: m
ak
e
s
th
e
c
o
m
m
an
d
c
o
n
d
it
io
n
al
. <
c>
c
an
b
e
E
Q
(
e
q
u
al
),
N
E
(n
o
t
e
q
u
al
),
C
S
(
ca
rr
y
se
t)
, C
C
(
ca
rr
y
cl
e
ar
),
M
I
(m
in
u
s)
, P
L
(p
lu
s)
, V
S
(
o
ve
rfl
o
w
s
e
t)
, V
C
(
o
ve
rfl
o
w
c
le
ar
),
H
I
(u
n
si
g
n
e
d
h
ig
h
e
r)
, L
S
(
u
n
si
g
n
e
d
l
o
w
e
r
o
r
sa
m
e
),
G
E
(s
ig
n
e
d
g
re
at
e
r
o
r
e
q
u
al
),
LT
(
si
g
n
e
d
l
e
ss
),
G
T
(
si
g
n
e
d
g
re
at
e
r)
, L
E
(s
ig
n
e
d
l
e
ss
o
r
e
q
u
al
),
A
L
(a
lw
ay
s)
q
: i
n
st
ru
ct
io
n
w
id
th
. C
an
b
e
.
N
f
o
r
n
ar
ro
w
(
16
b
it
)
o
r
.
W
f
o
r
w
id
e
(
32
b
it
)
R
d
, R
n
, R
m
: a
n
y
re
gi
st
er
, i
n
cl
. S
P
, L
R
a
n
d
P
C
(
w
it
h
s
o
m
e
r
e
st
ri
ct
io
n
s)
. R
e
su
lt
g
o
e
s
to
R
n
(
if
n
o
R
d
).
s
h
i
f
t
: v
al
u
e
o
f
R
m
i
s
p
re
p
ro
ce
ss
ed
w
it
h
L
S
L
(
lo
g
ic
al
s
h
if
t
le
ft
–
fi
l
ls
z
e
ro
s)
, L
S
R
(
lo
g
ic
al
s
h
if
t
ri
g
h
t
–
fi
ll
s
ze
ro
s)
, A
S
R
(
ar
it
h
m
e
ti
c
sh
if
t
ri
g
h
t
–
k
e
e
p
s
si
g
n
)
o
r
R
O
R
(
ro
ta
te
r
ig
h
t)
f
o
ll
o
w
e
d
b
y
th
e
#
n
u
m
b
e
r
o
f
b
it
s
to
s
h
if
t/
ro
ta
te
b
y.
T
h
e
re
i
s
al
so
a
R
R
X
(
ro
ta
te
r
ig
h
t
b
y
o
n
e
i
n
cl
. c
ar
ry
fl
a
g
)
c
o
n
s
t
: a
n
im
m
ed
ia
te
v
al
u
e
in
t
h
e
r
an
g
e
0
..
4
09
5
d
ir
e
ct
ly
o
r
in
t
h
e
r
an
g
e
0
..
2
55
w
it
h
r
o
ta
ti
o
n
.
a
d
d
s
r
1
,
r
4
,
r
5
a
d
c
s
r
1
,
r
4
q
a
d
d
r
1
,
r
4
,
r
5
a
d
d
r
1
,
#
1
10
1
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
1
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
d
d
in
g
th
e
va
lu
e
o
f
tw
o
r
eg
is
te
rs
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
C
0
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
r
0
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
O
R
O
P
1-
4
r
1
r
2
r
3
r
4
r
5
r
6
r
7
r
8
r
9
r
1
0
r
1
1
r
1
2
S
P
L
R
P
C
A
L
U
R
e
g
i
s
t
e
r
b
a
n
k
S
t
a
t
u
s
f
l
a
g
s
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
1
6
#
D
4
#
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
A
D
D
S
r
4
,
r
2
,
r
3
1
0
0
0
1
0
0
1
1
1
6
#
1
8
#
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
A
D
D
S
r
4
,
r
2
,
r
3
0
1
1
1
0
0
0
1
0
1
6
#
1
8
#
1
6
#
D
4
#
A
ss
e
m
b
le
r
D
is
as
se
m
b
le
r
r
4
:
=
r
2
+
r
3
S
ta
tu
s
fl
ag
s
se
t:
•
N
N
e
g
at
iv
e
(
M
S
B
=
1
)
•
Z
Z
e
ro
(
al
l
b
it
s
ze
ro
)
•
C
C
ar
ry
(
ca
rr
y
o
u
t)
•
V
O
ve
rfl
o
w
(
si
g
n
w
ro
n
g
)
97
2
H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e
U
w
e
R
.
Z
im
m
er
–
T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
C
o
m
p
u
te
r
O
rg
an
is
at
io
n
&
P
ro
g
ra
m
E
xe
cu
ti
o
n
2
02
1
11
0
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
0
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
3
2
b
it
B
o
o
le
an
(
b
it
-w
is
e)
i
n
st
ru
ct
io
n
s
a
n
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
:
R
d
R
n
R
m
sh
if
te
d
/
=
b
i
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
:
R
d
R
n
R
m
sh
if
te
d
/
=
o
r
r
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
:
R
d
R
n
R
m
sh
if
te
d
0
=
o
r
n
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
:
R
d
R
n
R
m
sh
if
te
d
0
=
e
o
r
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
:
R
d
R
n
R
m
sh
if
te
d
5
=
a
n
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
:
R
d
R
n
co
n
st
/
=
b
i
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
:
R
d
R
n
co
n
st
/
=
o
r
r
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
:
R
d
R
n
co
n
st
0
=
o
r
n
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
:
R
d
R
n
co
n
st
0
=
e
o
r
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
:
R
d
R
n
co
n
st
5
=
c
m
p
<
c
>
<
q
>
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
R
Fl
ag
s
n
m
sh
if
te
d
”
–
^
h
c
m
n
<
c
>
<
q
>
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
R
Fl
ag
s
n
m
sh
if
te
d
”
+
^
h
t
s
t
<
c
>
<
q
>
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
R
Fl
ag
s
n
m
sh
if
te
d
”
/
^
h
t
e
q
<
c
>
<
q
>
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
R
Fl
ag
s
n
m
sh
if
te
d
”
5
^
h
c
m
p
<
c
>
<
q
>
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
co
n
st
Fl
ag
s
n
”
–
^
h
c
m
n
<
c
>
<
q
>
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
co
n
st
Fl
ag
s
n
”
+
^
h
t
s
t
<
c
>
<
q
>
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
co
n
st
Fl
ag
s
n
”
/
^
h
t
e
q
<
c
>
<
q
>
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
co
n
st
Fl
ag
s
n
”
5
^
h
T
h
is
e
xh
au
st
s
th
e
s
im
p
le
A
LU
f
ro
m
ch
ap
te
r
1
…
10
6
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
6
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
3
2
b
it
a
d
d
i
n
st
ru
ct
io
n
s
a
d
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
a
d
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
a
d
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
a
d
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
q
a
d
d
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
s
: s
et
s
th
e
fl
ag
s
b
as
e
d
o
n
t
h
e
r
e
su
lt
c
: m
ak
e
s
th
e
c
o
m
m
an
d
c
o
n
d
it
io
n
al
. <
c>
c
an
b
e
E
Q
(
e
q
u
al
),
N
E
(n
o
t
e
q
u
al
),
C
S
(
ca
rr
y
se
t)
, C
C
(
ca
rr
y
cl
e
ar
),
M
I
(m
in
u
s)
, P
L
(p
lu
s)
, V
S
(
o
ve
rfl
o
w
s
e
t)
, V
C
(
o
ve
rfl
o
w
c
le
ar
),
H
I
(u
n
si
g
n
e
d
h
ig
h
e
r)
, L
S
(
u
n
si
g
n
e
d
l
o
w
e
r
o
r
sa
m
e
),
G
E
(s
ig
n
e
d
g
re
at
e
r
o
r
e
q
u
al
),
LT
(
si
g
n
e
d
l
e
ss
),
G
T
(
si
g
n
e
d
g
re
at
e
r)
, L
E
(s
ig
n
e
d
l
e
ss
o
r
e
q
u
al
),
A
L
(a
lw
ay
s)
q
: i
n
st
ru
ct
io
n
w
id
th
. C
an
b
e
.
N
f
o
r
n
ar
ro
w
(
16
b
it
)
o
r
.
W
f
o
r
w
id
e
(
32
b
it
)
R
d
, R
n
, R
m
: a
n
y
re
gi
st
er
, i
n
cl
. S
P
, L
R
a
n
d
P
C
(
w
it
h
s
o
m
e
r
e
st
ri
ct
io
n
s)
. R
e
su
lt
g
o
e
s
to
R
n
(
if
n
o
R
d
).
s
h
i
f
t
: v
al
u
e
o
f
R
m
i
s
p
re
p
ro
ce
ss
ed
w
it
h
L
S
L
(
lo
g
ic
al
s
h
if
t
le
ft
–
fi
l
ls
z
e
ro
s)
, L
S
R
(
lo
g
ic
al
s
h
if
t
ri
g
h
t
–
fi
ll
s
ze
ro
s)
, A
S
R
(
ar
it
h
m
e
ti
c
sh
if
t
ri
g
h
t
–
k
e
e
p
s
si
g
n
)
o
r
R
O
R
(
ro
ta
te
r
ig
h
t)
f
o
ll
o
w
e
d
b
y
th
e
#
n
u
m
b
e
r
o
f
b
it
s
to
s
h
if
t/
ro
ta
te
b
y.
T
h
e
re
i
s
al
so
a
R
R
X
(
ro
ta
te
r
ig
h
t
b
y
o
n
e
i
n
cl
. c
ar
ry
fl
a
g
)
c
o
n
s
t
: a
n
im
m
ed
ia
te
v
al
u
e
in
t
h
e
r
an
g
e
0
..
4
09
5
d
ir
e
ct
ly
o
r
in
t
h
e
r
an
g
e
0
..
2
55
w
it
h
r
o
ta
ti
o
n
.
A
n
y
o
f
th
o
se
i
n
st
ru
ct
io
n
s
re
q
u
ir
e
s
e
xa
ct
ly
o
n
e
C
P
U
c
yc
le
(i
n
t
e
rm
s
o
f
th
ro
u
g
h
p
u
t)
.
“R
e
d
u
ce
d
I
n
st
ru
ct
io
n
S
e
t
C
o
m
p
u
ti
n
g
(
R
IS
C
)”
10
2
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
2
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
d
d
in
g
th
e
va
lu
e
o
f
tw
o
r
eg
is
te
rs
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
C
0
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
r
0
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
C
r
1
r
2
r
3
r
4
r
5
r
6
r
7
r
8
r
9
r
1
0
r
1
1
r
1
2
S
P
L
R
P
C
A
L
U
R
e
g
i
s
t
e
r
b
a
n
k
S
t
a
t
u
s
f
l
a
g
s
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
R
m
R
d
n
A
N
D
S
<
R
d
n
>
,
< R m >
O
p
C
o
d
e
A
rg
u
m
en
ts
0
0
0
98
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
9
8
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
R
ef
er
en
ce
s
fo
r
th
is
c
h
ap
te
r
[P
at
te
rs
o
n
17
]
D
av
id
A
. P
at
te
rs
o
n
&
J
o
h
n
L
. H
e
n
n
e
ss
y
C
o
m
p
u
te
r
O
rg
an
iz
at
io
n
a
n
d
D
e
si
g
n
–
T
h
e
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
C
h
ap
te
r
2
“I
n
st
ru
ct
io
n
s:
L
an
g
u
ag
e
o
f
th
e
C
o
m
p
u
te
r”
&
C
h
ap
te
r
3
“A
ri
th
m
e
ti
c
fo
r
C
o
m
p
u
te
rs
”
A
R
M
e
d
it
io
n
, M
o
rg
an
K
au
fm
an
n
2
01
7
11
1
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
1
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
si
d
e
th
e
C
P
U
m
o
v
{
s
}
<
c
>
<
q
>
<
R
d
>
,
< R m >
m
o
v
{
s
}
<
c
>
<
q
>
<
R
d
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
R
m
;
R
d
:
=
c
o
n
s
t
l
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
l
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
0
0
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
.
.
C .
n
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
ccc
a
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
a
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
s
s
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
.
.
C .
n
l
s
l
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
l
s
l
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
0
0
0
3
1
3
0
.
.
C .
n
r
o
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
r
o
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
C .
r
r
x
{
s
}
<
c
>
<
q
>
<
R
d
>
,
< R m >
;
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
C
10
7
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
7
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
N
u
m
er
ic
C
P
U
s
ta
tu
s
fl
ag
s
0
N
at
u
ra
l
b
in
ar
y
n
u
m
b
er
s
2
n
-1
a
b
a+
b
C
ar
ry
W
ra
p
-a
ro
u
n
d
o
r
m
o
d
u
lo
2
n
2
‘s
c
o
m
p
le
m
en
t
b
in
ar
y
n
u
m
b
er
s
0
2
n
-1
-1
a
b
a+
b
O
ve
rfl
o
w
W
ra
p
-a
ro
u
n
d
-2
n
-1
c
2
c
O
ve
rfl
o
w
0
a
b
a+
b
Sa
tu
ra
te
c
Sa
tu
ra
te
2
c
d
2
d
W
h
ic
h
o
f
th
o
se
o
p
e
ra
ti
o
n
s
w
il
l
se
t
w
h
ic
h
fl
a
g
?
a
d
d
s
a
d
c
s
q
a
d
d
10
3
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
3
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
d
d
in
g
th
e
va
lu
e
o
f
tw
o
r
eg
is
te
rs
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
C
0
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
r
0
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
C
r
1
r
2
r
3
r
4
r
5
r
6
r
7
r
8
r
9
r
1
0
r
1
1
r
1
2
S
P
L
R
P
C
A
L
U
R
e
g
i
s
t
e
r
b
a
n
k
S
t
a
t
u
s
f
l
a
g
s
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
A
N
D
S
r
5
,
r
6
0
0
0
1
0
1
1
1
0
1
6
#
3
5
#
1
6
#
4
0
#
A
ss
e
m
b
le
r
D
is
as
se
m
b
le
r
r
5
:
=
r
5
&
r
6
99
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
9
9
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
d
d
in
g
th
e
va
lu
e
o
f
tw
o
r
eg
is
te
rs
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
C
0
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
r
0
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
C
r
1
r
2
r
3
r
4
r
5
r
6
r
7
r
8
r
9
r
1
0
r
1
1
r
1
2
S
P
L
R
P
C
A
L
U
R
e
g
i
s
t
e
r
b
a
n
k
S
t
a
t
u
s
f
l
a
g
s
N
Z
C
V
Q
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
T
h
e
C
P
U
w
il
l
fe
tc
h
t
h
e
c
o
n
te
n
t
o
f
th
e
m
e
m
o
ry
c
e
ll
w
h
ic
h
P
C
i
s
p
o
in
ti
n
g
t
o
.
W
e
w
an
t
th
e
C
P
U
t
o
e
xe
cu
te
:
r
4
:
=
r
2
+
r
3
W
h
at
t
o
s
to
re
i
n
t
h
is
m
e
m
o
ry
c
e
ll
?
11
2
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
2
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
si
d
e
th
e
C
P
U
m
o
v
{
s
}
<
c
>
<
q
>
<
R
d
>
,
< R m >
m
o
v
{
s
}
<
c
>
<
q
>
<
R
d
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
R
m
;
R
d
:
=
c
o
n
s
t
l
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
l
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
0
0
0
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
.
.
C .
n
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
ccc
a
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
a
s
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
s
s
s
3
1
3
0
2
9
2
8
2
1
0
.
.
C .
n
l
s
l
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
l
s
l
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
0
0
0
3
1 .
.
C .
n
r
o
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
#
<
n
>
r
o
r
{
s
}
<
c
>
<
q
>
<
R
d
>
,
<
R
m
>
,
< R s >
;
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
C .
r
r
x
{
s
}
<
c
>
<
q
>
<
R
d
>
,
< R m >
;
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
C
If
t
h
is
i
s
n
u
m
b
e
rs
t
h
e
n
…
/
R
m
2
n
r
o
u
n
d
e
d
t
o
w
ar
d
s
3
–
R
m
2
n
$fo
r
2’
s
co
m
p
le
m
e
n
ts
10
8
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
8
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
3
2
b
it
A
d
d
it
io
n
,
Su
b
tr
ac
ti
o
n
i
n
st
ru
ct
io
n
s
a
d
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
d
:
=
R
n
+
R
m
(
s
h
i
f
t
e
d
)
a
d
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
d
:
=
R
n
+
R
m
(
s
h
i
f
t
e
d
)
+
C
a
d
d
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
R
n
+
#
<
c
o
n
s
t
>
a
d
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
R
n
+
#
<
c
o
n
s
t
>
+
C
q
a
d
d
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
;
R
d
:
=
R
n
+
R
m
;
s
a
t
u
r
a
t
e
d
s
u
b
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
d
:
=
R
n
–
R
m
(
s
h
i
f
t
e
d
)
s
b
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
d
:
=
R
n
–
R
m
(
s
h
i
f
t
e
d
)
–
N
O
T
(
C
)
r
s
b
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
< R m >
{
,
<
s
h
i
f
t
>
}
;
R
d
:
=
R
m
(
s
h
i
f
t
e
d
)
–
R
n
s
u
b
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
R
n
–
#
<
c
o
n
s
t
>
s
b
c
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
R
n
–
#
<
c
o
n
s
t
>
–
N
O
T
(
C
)
r
s
b
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
#
<
c
o
n
s
t
>
;
R
d
:
=
#
<
c
o
n
s
t
>
–
R
n
q
s
u
b
<
c
>
<
q
>
{
<
R
d
>
,
}
R
n
,
R
m
;
R
d
:
=
R
n
–
R
m
;
s
a
t
u
r
a
t
e
d
A
ll
i
n
st
ru
ct
io
n
s
o
p
e
ra
te
o
n
3
2
b
it
w
id
e
n
u
m
b
e
rs
.
…
v
e
rs
io
n
s
fo
r
n
ar
ro
w
e
r
n
u
m
b
e
rs
, a
s
w
e
ll
a
s
ve
rs
io
n
s
w
h
ic
h
o
p
e
ra
te
o
n
m
u
lt
ip
le
n
ar
ro
w
e
r
n
u
m
b
e
rs
i
n
p
ar
al
le
l
e
xi
st
a
s
w
e
ll
.
10
4
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
4
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
d
d
in
g
th
e
va
lu
e
o
f
tw
o
r
eg
is
te
rs
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
C
0
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
r
0
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
A
i
XO
R
AN
D
B
i
O
R
O
P
1-
4
r
1
r
2
r
3
r
4
r
5
r
6
r
7
r
8
r
9
r
1
0
r
1
1
r
1
2
S
P
L
R
P
C
A
L
U
R
e
g
i
s
t
e
r
b
a
n
k
S
t
a
t
u
s
f
l
a
g
s
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
1
6
#
D
4
#
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
A
D
D
S
r
4
,
r
2
,
r
3
1
0
0
0
1
0
0
1
1
1
6
#
1
8
#
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
A
D
D
S
r
4
,
r
2
,
r
3
0
1
1
1
0
0
0
1
0
1
6
#
1
8
#
1
6
#
D
4
#
A
ss
e
m
b
le
r
D
is
as
se
m
b
le
r
r
4
:
=
r
2
+
r
3
S
ta
tu
s
fl
ag
s
se
t:
•
N
N
e
g
at
iv
e
(
M
S
B
=
1
)
•
Z
Z
e
ro
(
al
l
b
it
s
ze
ro
)
•
C
C
ar
ry
(
ca
rr
y
o
u
t)
•
V
O
ve
rfl
o
w
(
si
g
n
w
ro
n
g
)
10
0
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
0
0
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
d
d
in
g
th
e
va
lu
e
o
f
tw
o
r
eg
is
te
rs
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
C
0
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
r
0
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
P
1-
4
R
e
su
lt
i
A
i
XO
R
AN
D
B
i
XO
R
AN
D
O
R
S
i
AN
D
AN
D
AN
D
AN
D
O
R
O
R
O
P
1-
4
R
e
su
lt
i
C
r
1
r
2
r
3
r
4
r
5
r
6
r
7
r
8
r
9
r
1
0
r
1
1
r
1
2
S
P
L
R
P
C
A
L
U
R
e
g
i
s
t
e
r
b
a
n
k
S
t
a
t
u
s
f
l
a
g
s
N
Z
C
V
Q
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
R
m
R
n
R
d
A
D
D
S
<
R
d
>
,
<
R
n
>
,
< R m >
O
p
C
o
d
e
A
rg
u
m
en
ts
12
5
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
5
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddree ddddesssssssssss dddddddddddddrrr ddddddddddd
ppsssspppppppce peeeeeeeeeeee aaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
sssssss
eee
B
as
e
m
em
o
ry
c
el
l
o
ff
se
t
dddrr d
aaaaaaaaaaaaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
+
W
ri
te
-b
ac
k
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
,
#
+
/
–
<
o
f
f
s
e
t
>
]
!
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
,
#
+
/
–
<
o
f
f
s
e
t
>
]
!
R
e
ad
s
fr
o
m
a
n
o
ff
se
t
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
an
d
w
ri
te
s
th
e
o
ff
se
t
ad
d
re
ss
b
ac
k
i
n
to
t
h
e
o
ri
g
in
al
b
as
e
r
e
g
is
te
r.
Im
m
e
d
ia
te
a
d
d
re
ss
in
g
(“
P
re
-i
n
d
e
xe
d
”)
l
d
r
r
1
,
[
r
4
,
#
8
]
!
12
1
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
1
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
C
o
py
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss eeessssssssssss
ceeeeeeeeeeeeeeeeeeeeeee
R
b
–
A
d
d
re
ss
sssssss
eeeeee
M
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
In
i
ts
m
o
st
b
as
ic
f
o
rm
t
h
e
v
al
u
e
o
f
a
re
g
is
te
r
is
i
n
te
rp
re
te
d
a
s
an
ad
d
re
ss
a
n
d
t
h
e
m
em
o
ry
c
o
n
te
n
t
th
e
re
i
s
lo
ad
e
d
i
n
to
a
n
o
th
e
r
re
g
is
te
r.
e
c pppspac
AAAAddre
Y
e
t:
m
o
st
d
at
a
is
s
tr
u
ct
u
re
d
.
…
l
ik
e
a
g
ro
u
p
o
f
lo
ca
l
va
ri
ab
le
s,
a
r
e
co
rd
, a
n
ar
ra
y
an
d
a
n
y
co
m
b
in
at
io
n
o
f
th
e
a
b
o
ve
…
H
o
w
t
o
r
e
ad
a
n
e
n
tr
y
in
a
n
a
rr
ay
/r
e
co
rd
?
11
7
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
7
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
si
d
e
th
e
C
P
U
C
al
cu
la
te
:
e
:
=
a
+
b
–
2
*
c
W
e
n
e
e
d
t
o
c
h
e
ck
r
e
su
lt
s
af
te
r
e
ac
h
s
te
p
:
a
d
d
s
r
1
,
r
1
,
r
2
;
n
e
e
d
t
o
c
h
e
c
k
o
v
e
r
f
l
o
w
f
l
a
g
l
s
l
r
3
,
r
3
,
#
1
;
n
e
e
d
t
o
c
h
e
c
k
t
h
a
t
t
h
e
s
i
g
n
d
i
d
n
o
t
c
h
a
n
g
e
s
u
b
s
r
4
,
r
1
,
r
3
;
n
e
e
d
t
o
c
h
e
c
k
o
v
e
r
f
l
o
w
f
l
a
g
a
g
a
i
n
W
e
d
o
n
’t
h
av
e
t
h
e
m
e
an
s
ye
t
to
b
ra
n
ch
o
ff
i
n
to
d
if
fe
re
n
t
ac
ti
o
n
s
in
c
as
e
t
h
in
g
s
g
o
b
ad
…
t
o
c
o
m
e
s
o
o
n
.
11
3
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
3
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
si
d
e
th
e
C
P
U
C
al
cu
la
te
:
e
:
=
a
+
b
–
2
*
c
as
su
m
in
g
a
ll
t
yp
e
s
ar
e
3
2
b
it
2
’s
c
o
m
p
le
m
e
n
t
n
u
m
b
e
rs
(
I
n
t
e
g
e
r
),
r
1
h
o
ld
s
a
, r
2
h
o
ld
s
b
, r
3
h
o
ld
s
c
, a
n
d
t
h
e
r
e
su
lt
s
sh
o
u
ld
b
e
i
n
r
4
.
12
6
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
6
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddree ddddesssssssssss ddddddddddddddrrr ddddddddddd
pppsssspppppppce peeeeeeeeeeee aaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
sssssss
eee
B
as
e
m
em
o
ry
c
el
l
o
ff
se
t
dddddrrrr d
aaaaaaaaaaaaaaaaaaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
s
–
So
u
rc
e
+
W
ri
te
-b
ac
k
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
,
#
+
/
–
<
o
f
f
s
e
t
>
]
!
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
,
#
+
/
–
<
o
f
f
s
e
t
>
]
!
W
ri
te
s
to
a
n
o
ff
se
t
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
an
d
w
ri
te
s
th
e
o
ff
se
t
ad
d
re
ss
b
ac
k
i
n
to
t
h
e
o
ri
g
in
al
b
as
e
r
e
g
is
te
r.
Im
m
e
d
ia
te
a
d
d
re
ss
in
g
(“
P
re
-i
n
d
e
xe
d
”)
s
t
r
r
1
,
[
r
4
,
#
–
1
2
]
!
12
2
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
2
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
C
o
py
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAAAddddddree ddddessssssssssss dddddddddddddrrr dddddddd
pppsssspppppppce peeeeeeeeeeee aaaaaaaacaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
sssssss
eee
B
as
e
m
em
o
ry
c
el
l
R
i
o
r
co
n
st
–
I
n
d
ex
dddrrr d
aaaaaaaaaaaaaaaaaaaaaaa
In
d
ex
ed
m
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
W
ri
te
-b
ac
k
+
M
o
st
c
o
p
y
o
p
e
ra
ti
o
n
s
b
e
tw
e
e
n
C
P
U
a
n
d
m
e
m
o
ry
f
o
ll
o
w
t
h
is
b
as
ic
s
ch
e
m
e
.
11
8
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
8
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
si
d
e
th
e
C
P
U
C
al
cu
la
te
:
e
:
=
a
+
b
–
2
*
c
W
e
n
e
e
d
t
o
c
h
e
ck
r
e
su
lt
s
af
te
r
e
ac
h
s
te
p
:
a
d
d
s
r
1
,
r
1
,
r
2
;
n
e
e
d
t
o
c
h
e
c
k
o
v
e
r
f
l
o
w
f
l
a
g
l
s
l
r
3
,
r
3
,
#
1
;
n
e
e
d
t
o
c
h
e
c
k
t
h
a
t
t
h
e
s
i
g
n
d
i
d
n
o
t
c
h
a
n
g
e
s
u
b
s
r
4
,
r
1
,
r
3
;
n
e
e
d
t
o
c
h
e
c
k
o
v
e
r
f
l
o
w
f
l
a
g
a
g
a
i
n
W
e
d
o
n
’t
h
av
e
t
h
e
m
e
an
s
ye
t
to
b
ra
n
ch
o
ff
i
n
to
d
if
fe
re
n
t
ac
ti
o
n
s
in
c
as
e
t
h
in
g
s
g
o
b
ad
…
t
o
c
o
m
e
s
o
o
n
.
O
r
w
e
u
se
s
at
u
ra
ti
o
n
a
ri
th
m
e
ti
c
an
d
l
iv
e
w
it
h
t
h
e
e
rr
o
r:
q
a
d
d
r
1
,
r
1
,
r
2
q
a
d
d
r
3
,
r
3
,
r
3
q
s
u
b
r
4
,
r
1
,
r
3
I
f
w
e
k
n
o
w
w
e
n
e
e
d
t
o
c
ar
ry
o
n
e
it
h
e
r
w
ay
, t
h
is
at
l
e
as
t
m
in
im
iz
e
s
th
e
l
o
ca
l
e
rr
o
rs
.
11
4
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
4
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
si
d
e
th
e
C
P
U
C
al
cu
la
te
:
e
:
=
a
+
b
–
2
*
c
as
su
m
in
g
a
ll
t
yp
e
s
ar
e
3
2
b
it
2
’s
c
o
m
p
le
m
e
n
t
n
u
m
b
e
rs
(
I
n
t
e
g
e
r
),
r
1
h
o
ld
s
a
, r
2
h
o
ld
s
b
, r
3
h
o
ld
s
c
, a
n
d
t
h
e
r
e
su
lt
s
sh
o
u
ld
b
e
i
n
r
4
.
a
d
d
r
5
,
r
1
,
r
2
l
s
l
r
6
,
r
3
,
#
1
;
y
o
u
c
o
u
l
d
a
l
s
o
w
r
i
t
e
:
m
o
v
r
6
,
r
3
,
l
s
l
#
1
s
u
b
r
4
,
r
5
,
r
6
W
e
n
e
e
d
t
e
m
p
o
ra
ry
s
to
ra
g
e
(
r
5
, r
6
)
in
t
h
e
p
ro
ce
ss
a
s
w
e
d
id
n
’t
w
an
t
to
o
ve
r-
w
ri
te
t
h
e
o
ri
g
in
al
v
al
u
e
s.
Y
e
t
th
e
t
o
ta
l
n
u
m
b
e
r
o
f
re
g
is
te
rs
i
s
al
w
ay
s
li
m
it
e
d
.
12
7
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
7
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddree ddddesssssssssss ddddddddddddddrrr ddddddddddd
pppsssspppppppce peeeeeeeee aaaaaaaaaaaaaaaacaaaaaaaaaaeeeeeeeeeeee
R
b
–
B
as
e
ad
d
re
ss
sssssss
eeeeee
B
as
e
m
em
o
ry
c
el
l
o
ff
se
t
dddrr d
aaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
+
W
ri
te
-b
ac
k
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
]
,
#
+
/
–
<
o
f
f
s
e
t
>
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
]
,
#
+
/
–
<
o
f
f
s
e
t
>
R
e
ad
s
fr
o
m
a
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
an
d
w
ri
te
s
th
e
o
ff
se
t
ad
d
re
ss
b
ac
k
i
n
to
t
h
e
o
ri
g
in
al
b
as
e
r
e
g
is
te
r.
Im
m
e
d
ia
te
a
d
d
re
ss
in
g
(“
Po
st
-i
n
d
e
xe
d
”)
l
d
r
r
1
,
[
r
4
]
,
#
8
12
3
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
3
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAAAddddddree ddddessssssssssss ddddddddddddddrrr dddddddd
pppsssspppppppce peeeeeeeeeeee aaaaaaaaacaaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
sssssss
eee
B
as
e
m
em
o
ry
c
el
l
o
ff
se
t
dddrrr d
aaaaaaaaaaaaaaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
+
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
{
,
#
+
/
–
<
o
f
f
s
e
t
>
}
]
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
{
,
#
+
/
–
<
o
f
f
s
e
t
>
}
]
R
e
ad
s
fr
o
m
a
p
o
te
n
ti
al
ly
o
ff
se
t
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
.
Im
m
e
d
ia
te
a
d
d
re
ss
in
g
l
d
r
r
1
,
[
r
4
]
l
d
r
r
1
,
[
r
4
,
#
8
]
11
9
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
9
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
C
o
rt
ex
-M
4
A
d
d
re
ss
S
p
ac
e
Y
o
u
r
C
P
U
h
as
3
2
b
it
o
f
ad
d
re
ss
s
p
ac
e
4
G
B
…
a
d
d
re
ss
s
p
ac
e
d
o
e
s
n
o
t
e
q
u
at
e
t
o
p
h
ys
ic
al
m
e
m
o
ry
!
N
o
t
al
l m
e
m
o
ry
is
e
q
u
al
: S
o
m
e
m
e
m
o
ry
…
…
c
an
b
e
e
xe
cu
te
d
…
c
an
b
e
w
ri
tt
en
t
o
o
r
re
ad
f
ro
m
o
r
b
o
th
…
h
as
s
id
e-
ef
fe
ct
s
(c
o
ff
e
e
c
u
p
s
fa
ll
o
ve
r)
…
h
as
s
tr
ic
tl
y-
o
rd
er
ed
a
cc
e
ss
…
d
o
es
n
o
t
p
hy
si
ca
ll
y
ex
is
t
1
6
#
0
0
0
0
0
0
0
0
#
1
6
#
1
F
F
F
F
F
F
F
#
1
6
#
3
F
F
F
F
F
F
F
#
1
6
#
2
0
0
0
0
0
0
0
#
1
6
#
5
F
F
F
F
F
F
F
#
1
6
#
4
0
0
0
0
0
0
0
#
1
6
#
9
F
F
F
F
F
F
F
#
1
6
#
6
0
0
0
0
0
0
0
#
1
6
#
D
F
F
F
F
F
F
F
#
1
6
#
A
0
0
0
0
0
0
0
#
1
6
#
E
0
0
F
F
F
F
F
#
1
6
#
E
0
0
0
0
0
0
0
#
1
6
#
F
F
F
F
F
F
F
#
1
6
#
E
0
1
0
0
0
0
0
#
C
o
d
e
SR
A
M
Pe
ri
p
h
er
al
dddddrrreee
Ex
te
rn
al
R
A
M
essss
Ex
te
rn
al
d
ev
ic
e
P
ri
va
te
p
er
ip
h
er
al
b
u
s
V
en
d
o
r-
sp
ec
ifi
c
m
em
o
ry
0
.
5 G
B
0
.
5 G
B
0
.
5 G
B
1 G
B
1
G
B
1
M
B
5
1
1
M
B
11
5
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
5
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
si
d
e
th
e
C
P
U
C
al
cu
la
te
:
e
:
=
a
+
b
–
2
*
c
as
su
m
in
g
a
ll
t
yp
e
s
ar
e
3
2
b
it
2
’s
c
o
m
p
le
m
e
n
t
n
u
m
b
e
rs
(
I
n
t
e
g
e
r
),
r
1
h
o
ld
s
a
, r
2
h
o
ld
s
b
, r
3
h
o
ld
s
c
, a
n
d
t
h
e
r
e
su
lt
s
sh
o
u
ld
b
e
i
n
r
4
.
a
d
d
r
5
,
r
1
,
r
2
l
s
l
r
6
,
r
3
,
#
1
;
y
o
u
c
o
u
l
d
a
l
s
o
w
r
i
t
e
:
m
o
v
r
6
,
r
3
,
l
s
l
#
1
s
u
b
r
4
,
r
5
,
r
6
W
e
n
e
e
d
t
e
m
p
o
ra
ry
s
to
ra
g
e
(
r
5
, r
6
)
in
t
h
e
p
ro
ce
ss
a
s
w
e
d
id
n
’t
w
an
t
to
o
ve
r-
w
ri
te
t
h
e
o
ri
g
in
al
v
al
u
e
s.
Y
e
t
th
e
t
o
ta
l
n
u
m
b
e
r
o
f
re
g
is
te
rs
i
s
al
w
ay
s
li
m
it
e
d
.
H
o
w
a
b
o
u
t
w
e
a
ss
u
m
e
t
h
at
v
al
u
e
s
ar
e
n
o
l
o
n
g
e
r
n
e
e
d
e
d
a
ft
e
r
th
is
e
xp
re
ss
io
n
:
12
8
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
8
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddree ddddesssssssssss ddddddddddddddrrr ddddddddddd
ppsssspppppppce peeeeeeeee aaaaaaaaaaaaaacaaaaaaaaeeeeeeeeeeee
R
b
–
B
as
e
ad
d
re
ss
sssssssssssss
eeeeeeeeeeeeee
B
as
e
m
em
o
ry
c
el
l
o
ff
se
t
dddrr d
aaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
s
–
So
u
rc
e
+
W
ri
te
-b
ac
k
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
]
,
#
+
/
–
<
o
f
f
s
e
t
>
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
]
,
#
+
/
–
<
o
f
f
s
e
t
>
W
ri
te
s
to
a
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
an
d
w
ri
te
s
th
e
o
ff
se
t
ad
d
re
ss
b
ac
k
i
n
to
t
h
e
o
ri
g
in
al
b
as
e
r
e
g
is
te
r.
Im
m
e
d
ia
te
a
d
d
re
ss
in
g
(“
Po
st
-i
n
d
e
xe
d
”)
s
t
r
r
1
,
[
r
4
]
,
#
8
12
4
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
4
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAAAddddddree ddddessssssssssss ddddddddddddddrrr dddddddd
ppsssspppppppce peeeeeeeeeeee aaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
sssssss
eee
B
as
e
m
em
o
ry
c
el
l
o
ff
se
t
ddddddddrrrr d
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
s
–
So
u
rc
e
+
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
{
,
#
+
/
–
<
o
f
f
s
e
t
>
}
]
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
{
,
#
+
/
–
<
o
f
f
s
e
t
>
}
]
W
ri
te
s
to
a
p
o
te
n
ti
al
ly
o
ff
se
t
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
.
Im
m
e
d
ia
te
a
d
d
re
ss
in
g
s
t
r
r
1
,
[
r
4
,
#
–
1
2
]
s
t
r
r
1
,
[
r
4
]
12
0
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
0
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
C
o
py
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddrree dddddesssssssssss
ppssssppppppppaaace paaeeeeeeeeeeeeeeeeeeeee
R
b
–
A
d
d
re
ss
ssssssss
eeeeee
M
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
In
i
ts
m
o
st
b
as
ic
f
o
rm
t
h
e
v
al
u
e
o
f
a
re
g
is
te
r
is
i
n
te
rp
re
te
d
a
s
an
ad
d
re
ss
a
n
d
t
h
e
m
em
o
ry
c
o
n
te
n
t
th
e
re
i
s
lo
ad
e
d
i
n
to
a
n
o
th
e
r
re
g
is
te
r.
11
6
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
1
6
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
si
d
e
th
e
C
P
U
C
al
cu
la
te
:
e
:
=
a
+
b
–
2
*
c
as
su
m
in
g
a
ll
t
yp
e
s
ar
e
3
2
b
it
2
’s
c
o
m
p
le
m
e
n
t
n
u
m
b
e
rs
(
I
n
t
e
g
e
r
),
r
1
h
o
ld
s
a
, r
2
h
o
ld
s
b
, r
3
h
o
ld
s
c
, a
n
d
t
h
e
r
e
su
lt
s
sh
o
u
ld
b
e
i
n
r
4
.
a
d
d
r
5
,
r
1
,
r
2
l
s
l
r
6
,
r
3
,
#
1
;
y
o
u
c
o
u
l
d
a
l
s
o
w
r
i
t
e
:
m
o
v
r
6
,
r
3
,
l
s
l
#
1
s
u
b
r
4
,
r
5
,
r
6
W
e
n
e
e
d
t
e
m
p
o
ra
ry
s
to
ra
g
e
(
r
5
, r
6
)
in
t
h
e
p
ro
ce
ss
a
s
w
e
d
id
n
’t
w
an
t
to
o
ve
r-
w
ri
te
t
h
e
o
ri
g
in
al
v
al
u
e
s.
Y
e
t
th
e
t
o
ta
l
n
u
m
b
e
r
o
f
re
g
is
te
rs
i
s
al
w
ay
s
li
m
it
e
d
.
H
o
w
a
b
o
u
t
w
e
a
ss
u
m
e
t
h
at
v
al
u
e
s
ar
e
n
o
l
o
n
g
e
r
n
e
e
d
e
d
a
ft
e
r
th
is
e
xp
re
ss
io
n
:
a
d
d
r
1
,
r
1
,
r
2
l
s
l
r
3
,
r
3
,
#
1
s
u
b
r
4
,
r
1
,
r
3
…
y
o
u
r
co
m
p
il
e
r
w
il
l
k
n
o
w
w
h
e
n
s
u
ch
s
id
e
-e
ff
e
ct
s
ar
e
o
k
a
n
d
w
h
e
n
n
o
t.
A
n
y
o
ve
rfl
o
w
s?
14
1
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
1
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
m
em
o
ry
C
al
cu
la
te
a
g
ai
n
:
e
:
=
a
+
b
–
2
*
c
O
r
w
it
h
o
ve
rfl
o
w
c
h
e
ck
s:
l
d
r
r
1
,
[
f
p
,
#
–
1
2
]
l
d
r
r
2
,
[
f
p
,
#
–
1
6
]
a
d
d
s
r
1
,
r
1
,
r
2
b
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
l
d
r
r
2
,
[
f
p
,
#
–
2
0
]
a
d
d
s
r
2
,
r
2
,
r
2
b
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
s
u
b
s
r
1
,
r
1
,
r
2
b
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
s
t
r
r
1
,
[
f
p
,
#
–
2
4
]
… O
v
e
r
f
l
o
w
:
s
v
c
#
5
;
c
a
l
l
t
h
e
o
p
e
r
a
t
i
n
g
s
y
s
t
e
m
o
r
r
u
n
t
i
m
e
e
n
v
i
r
o
n
m
e
n
t
w
i
t
h
#
5
;
(
a
s
s
u
m
i
n
g
t
h
a
t
#
5
i
n
d
i
c
a
t
e
s
a
n
o
v
e
r
f
l
o
w
s
i
t
u
a
t
i
o
n
)
…
b
u
t
h
o
w
d
o
w
e
k
n
o
w
w
h
e
re
t
h
is
h
ap
p
e
n
e
d
o
r
h
o
w
to
c
o
n
ti
n
u
e
o
p
e
ra
ti
o
n
s?
13
7
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
7
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
m
em
o
ry
C
al
cu
la
te
a
g
ai
n
:
e
:
=
a
+
b
–
2
*
c
O
r
in
s
at
u
ra
ti
o
n
a
ri
th
m
e
ti
c:
l
d
r
r
1
,
[
f
p
,
#
–
1
2
]
l
d
r
r
2
,
[
f
p
,
#
–
1
6
]
q
a
d
d
r
1
,
r
1
,
r
2
l
d
r
r
2
,
[
f
p
,
#
–
2
0
]
q
a
d
d
r
2
,
r
2
,
r
2
q
s
u
b
r
1
,
r
1
,
r
2
s
t
r
r
1
,
[
f
p
,
#
–
2
4
]
13
3
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
3
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddee dddddrrrrrrreeeesssssssssss
ppssssppppppppace paaaaaaaccccceeeeeeeee aaaccccccccccceeeeeeeeeeee
R
s
–
St
ac
k
ad
d
re
ss
rrrreeeeeeeee
cccccccccccccccccccccccccc
R
el
at
iv
e
ce
ll
n
R
z
–
D
es
ti
n
at
io
n
ssssssss
eeeeee
R
el
at
iv
e
ce
ll
1
R
x
–
D
es
ti
n
at
io
n
W
ri
te
-b
ac
k
…
…
…
s
t
m
i
a
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
l
d
m
d
b
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
R
e
ad
s
m
u
lt
ip
le
r
e
g
is
te
rs
f
ro
m
s
e
q
u
e
n
ti
al
m
e
m
o
ry
a
d
d
re
ss
e
s.
S
to
re
s
“i
n
cr
e
m
e
n
t
af
te
r”
a
n
d
l
o
ad
s
“d
e
cr
e
m
e
n
t
b
e
fo
re
”.
M
u
lt
ip
le
r
e
g
is
te
rs
(p
o
si
ti
ve
g
ro
w
in
g
s
ta
ck
)
N
o
te
t
h
at
a
n
y
re
g
is
te
r
ca
n
b
e
u
se
a
s
st
ac
k
b
as
e
,
i.
e
. y
o
u
c
an
h
av
e
m
u
lt
ip
le
s
ta
ck
s
si
m
u
lt
an
e
o
u
sl
y.
l
d
m
d
b
r
9
!
,
{
r
1
,
r
3
,
r
4
,
f
p
}
12
9
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
2
9
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAAAdddddree ddddessssssssss ddddddddddddrrr dddddddd
ppsssspppppppce peeeeeeeeeeee aaaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
ssssssss
eee
B
as
e
m
em
o
ry
c
el
l
R
i
–
In
d
ex
{
sh
if
te
d
}
dddrrrr d
aaaaaaaaaaaaaaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
d
–
D
es
ti
n
at
io
n
+
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
,
< R i >
{
,
L
S
L
#
<
s
h
i
f
t
>
}
]
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
,
< R i >
{
,
L
S
L
#
<
s
h
i
f
t
>
}
]
R
e
ad
s
fr
o
m
a
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
p
lu
s
a
p
o
te
n
ti
al
ly
s
h
if
te
d
i
n
d
e
x
re
g
is
te
r.
In
d
e
x
re
g
is
te
r
ad
d
re
ss
in
g
l
d
r
r
1
,
[
r
4
,
r
3
]
i
ll
h
if
d
i
d
i
l
d
r
r
1
,
[
r
4
,
r
3
,
L
S
L
#
2
]
14
2
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
2
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
m
em
o
ry
C
al
cu
la
te
a
g
ai
n
:
e
:
=
a
+
b
–
2
*
c
O
r
w
it
h
o
ve
rfl
o
w
c
h
e
ck
s:
l
d
r
r
1
,
[
f
p
,
#
–
1
2
]
l
d
r
r
2
,
[
f
p
,
#
–
1
6
]
a
d
d
s
r
1
,
r
1
,
r
2
b
l
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
;
k
e
e
p
n
e
x
t
l
o
c
a
t
i
o
n
i
n
L
R
l
d
r
r
2
,
[
f
p
,
#
–
2
0
]
a
d
d
s
r
2
,
r
2
,
r
2
b
l
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
;
k
e
e
p
n
e
x
t
l
o
c
a
t
i
o
n
i
n
L
R
s
u
b
s
r
1
,
r
1
,
r
2
b
l
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
;
k
e
e
p
n
e
x
t
l
o
c
a
t
i
o
n
i
n
L
R
s
t
r
r
1
,
[
f
p
,
#
–
2
4
]
… O
v
e
r
f
l
o
w
:
…
;
…
f
o
r
e
x
a
m
p
l
e
w
r
i
t
i
n
g
a
l
o
g
e
n
t
r
y
w
i
t
h
l
o
c
a
t
i
o
n
b
x
l
r
;
r
e
s
u
m
e
o
p
e
r
a
t
i
o
n
s
–
a
s
s
u
m
i
n
g
t
h
e
a
b
o
v
e
d
i
d
n
o
t
c
h
a
n
g
e
L
R
13
8
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
8
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
m
em
o
ry
C
al
cu
la
te
a
g
ai
n
:
e
:
=
a
+
b
–
2
*
c
O
r
w
it
h
o
ve
rfl
o
w
c
h
e
ck
s:
l
d
r
r
1
,
[
f
p
,
#
–
1
2
]
l
d
r
r
2
,
[
f
p
,
#
–
1
6
]
a
d
d
s
r
1
,
r
1
,
r
2
;
n
e
e
d
t
o
c
h
e
c
k
o
v
e
r
f
l
o
w
f
l
a
g
l
d
r
r
2
,
[
f
p
,
#
–
2
0
]
l
s
l
r
2
,
r
2
,
#
1
;
n
e
e
d
t
o
c
h
e
c
k
t
h
a
t
t
h
e
s
i
g
n
d
i
d
n
o
t
c
h
a
n
g
e
s
u
b
s
r
1
,
r
1
,
r
2
;
n
e
e
d
t
o
c
h
e
c
k
o
v
e
r
f
l
o
w
f
l
a
g
s
t
r
r
1
,
[
f
p
,
#
–
2
4
]
I
t’s
t
im
e
w
e
l
e
ar
n
a
b
o
u
t
b
ra
n
ch
in
g
o
ff
i
n
to
al
te
rn
at
iv
e
e
xe
cu
ti
o
n
p
at
h
s.
13
4
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
4
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddee dddddrrrrrrreeeesssssssssss
pppssssppppppppace paaaaaaaccccceeeeeeeee aaaccccccccccceeeeeeeeeeee
R
s
–
St
ac
k
ad
d
re
ss
rrrrreeeeeeeeee
cccccccccccccccccccccccccccc
R
el
at
iv
e
ce
ll
n
R
z
–
So
u
rc
e
ssssssssssssss
eeeeeeeeeeeeee
R
el
at
iv
e
ce
ll
1
R
x
–
So
u
rc
e
W
ri
te
-b
ac
k
…
…
…
s
t
m
d
b
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
l
d
m
i
a
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
S
to
re
s
m
u
lt
ip
le
r
e
g
is
te
rs
t
o
s
e
q
u
e
n
ti
al
m
e
m
o
ry
a
d
d
re
ss
e
s.
S
to
re
s
“d
e
cr
e
m
e
n
t
b
e
fo
re
”
an
d
l
o
ad
s
“i
n
cr
e
m
e
n
t
af
te
r”
.
M
u
lt
ip
le
r
e
g
is
te
rs
(n
e
g
at
iv
e
g
ro
w
in
g
s
ta
ck
)
N
e
g
at
iv
e
g
ro
w
in
g
st
ac
k
s
ar
e
t
h
e
d
e
-f
ac
to
st
an
d
ar
d
i
n
i
n
d
u
st
ry
.
s
t
m
d
b
S
P
!
,
{
r
1
,
r
3
,
r
4
,
f
p
}
13
0
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
0
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAAAdddddree ddddessssssssss dddddddddddddrrr dddddddd
pppsssspppppppce peeeeeeeeeeee aaaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaa
R
b
–
B
as
e
ad
d
re
ss
ssssssss
eee
B
as
e
m
em
o
ry
c
el
l
R
i
–
In
d
ex
{
sh
if
te
d
}
ddddddddrrrr d
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
O
ff
se
t
m
em
o
ry
c
el
l
R
s
–
So
u
rc
e
+
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
<
R
b
>
,
< R i >
{
,
L
S
L
#
<
s
h
i
f
t
>
}
]
s
t
r
<
c
>
<
q
>
<
R
s
>
,
[
<
R
b
>
,
< R i >
{
,
L
S
L
#
<
s
h
i
f
t
>
}
]
W
ri
te
s
to
a
m
e
m
o
ry
c
e
ll
w
it
h
a
b
as
e
r
e
g
is
te
r
ad
d
re
ss
p
lu
s
a
p
o
te
n
ti
al
ly
s
h
if
te
d
i
n
d
e
x
re
g
is
te
r.
In
d
e
x
re
g
is
te
r
ad
d
re
ss
in
g
s
t
r
r
1
,
[
r
4
,
r
3
]
i
ll
h
if
d
i
d
i
s
t
r
r
1
,
[
r
4
,
r
3
,
L
S
L
#
2
]
14
3
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
3
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
E
ss
en
ti
al
m
u
lt
ip
li
ca
ti
o
n
s
an
d
d
iv
is
io
n
s
32
b
it
t
o
3
2
b
it
m
u
l
{
s
}
<
c
>
<
q
>
{
<
R
d
>
,
}
<
R
n
>
,
<
R
m
>
;
R
d
:
=
(
R
n
*
R
m
)
m
l
a
<
c
>
<
R
d
>
,
<
R
n
>
,
<
R
m
>
,
<
R
a
>
;
R
d
:
=
R
a
+
(
R
n
*
R
m
)
m
l
s
<
c
>
<
R
d
>
,
<
R
n
>
,
<
R
m
>
,
<
R
a
>
;
R
d
:
=
R
a
–
(
R
n
*
R
m
)
u
d
i
v
<
c
>
<
R
d
>
,
<
R
n
>
,
<
R
m
>
;
R
d
:
=
u
n
s
i
g
n
e
d
(
R
n
/
R
m
)
;
r
o
u
n
d
e
d
t
o
w
a
r
d
s
0
s
d
i
v
<
c
>
<
R
d
>
,
<
R
n
>
,
<
R
m
>
;
R
d
:
=
s
i
g
n
e
d
(
R
n
/
R
m
)
;
r
o
u
n
d
e
d
t
o
w
a
r
d
s
0
32
b
it
t
o
6
4
b
it
u
m
u
l
l
<
c
>
<
R
d
L
o
>
,
<
R
d
H
i
>
,
<
R
n
>
,
<
R
m
>
;
R
d
H
i
:
R
d
L
o
:
=
u
n
s
i
g
n
e
d
(
(
R
n
*
R
m
)
)
u
m
l
a
l
<
c
>
<
q
>
<
R
d
L
o
>
,
<
R
d
H
i
>
,
<
R
n
>
,
<
R
m
>
;
R
d
H
i
:
R
d
L
o
:
=
u
n
s
i
g
n
e
d
(
R
d
H
i
:
R
d
L
o
+
(
R
n
*
R
m
)
)
s
m
u
l
l
<
c
>
<
R
d
L
o
>
,
<
R
d
H
i
>
,
<
R
n
>
,
<
R
m
>
;
R
d
H
i
:
R
d
L
o
:
=
s
i
g
n
e
d
(
(
R
n
*
R
m
)
)
s
m
l
a
l
<
c
>
<
R
d
L
o
>
,
<
R
d
H
i
>
,
<
R
n
>
,
<
R
m
>
;
R
d
H
i
:
R
d
L
o
:
=
s
i
g
n
e
d
(
R
d
H
i
:
R
d
L
o
+
(
R
n
*
R
m
)
)
…
v
e
rs
io
n
s
fo
r
n
ar
ro
w
e
r
n
u
m
b
e
rs
, a
s
w
e
ll
a
s
ve
rs
io
n
s
w
h
ic
h
o
p
e
ra
te
o
n
m
u
lt
ip
le
n
ar
ro
w
e
r
n
u
m
b
e
rs
i
n
p
ar
al
le
l
e
xi
st
a
s
w
e
ll
.
13
9
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
9
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
B
ra
n
ch
i
n
st
ru
ct
io
n
s
b
<
c
>
<
q
>
< l a b e l >
;
i
f
c
t
h
e
n
P
C
:
=
l
a
b
e
l
b
l
<
c
>
< l a b e l >
;
i
f
c
t
h
e
n
L
R
:
=
P
C
_
n
e
x
t
;
P
C
:
=
l
a
b
e
l
b
x
<
c
>
< R m >
;
i
f
c
t
h
e
n
P
C
:
=
R
m
b
l
x
<
c
>
<
q
>
< R m >
;
i
f
c
t
h
e
n
L
R
:
=
P
C
_
n
e
x
t
;
P
C
:
=
R
m
c
b
z
<
q
>
<
R
n
>
,
< l a b e l >
;
i
f
R
n
=
0
t
h
e
n
P
C
:
=
l
a
b
e
l
c
b
n
z
<
q
>
<
R
n
>
,
< l a b e l >
;
i
f
R
n
/
=
0
t
h
e
n
P
C
:
=
l
a
b
e
l
< c >
M
e
an
in
g
s
F
l
a
g
s
e
q
Eq
u
al
Z
=
1
n
e
N
o
t
e
q
u
al
Z
=
0
c
s
,
h
s
C
ar
ry
s
e
t,
U
n
si
g
n
e
d
h
ig
h
e
r
o
r
sa
m
e
C
=
1
c
c
,
l
o
C
ar
ry
c
le
ar
, U
n
si
g
n
e
d
l
o
w
e
r
C
=
0
m
i
M
in
u
s,
N
e
g
at
iv
e
N
=
1
p
l
P
lu
s,
P
o
si
ti
ve
o
r
ze
ro
N
=
0
v
s
O
ve
rfl
o
w
V
=
1
v
c
N
o
o
ve
rfl
o
w
V
=
0
h
i
U
n
si
g
n
e
d
h
ig
h
e
r
C
=
1
/
Z
=
0
l
s
U
n
si
g
n
e
d
l
o
w
e
r
o
r
sa
m
e
C
=
0
0
Z
=
1
g
e
S
ig
n
e
d
g
re
at
e
r
o
r
e
q
u
al
N
=
Z
l
t
S
ig
n
e
d
l
e
ss
N
!
Z
g
t
S
ig
n
e
d
g
re
at
e
r
Z
=
0
/
N
=
V
l
e
S
ig
n
e
d
l
e
ss
o
r
e
q
u
al
Z
=
1
0
N
!
V
a
l
,
< n o n e >
A
lw
ay
s
a
n
y
13
5
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
5
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
ssssss AAAAAAddddddee dddddrrrrrrreeeesssssssssss
pppsssspppppppace paaaaaaaccccceeeeeeeee aaacccccccccccceeeeeeeeeeee
R
s
–
St
ac
k
ad
d
re
ss
rrrreeeeeeeee
cccccccccccccccccccccccccc
R
el
at
iv
e
ce
ll
n
R
z
–
D
es
ti
n
at
io
n
ssssssss
eeeeee
R
el
at
iv
e
ce
ll
1
R
x
–
D
es
ti
n
at
io
n
W
ri
te
-b
ac
k
…
…
…
s
t
m
d
b
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
l
d
m
i
a
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
R
e
ad
s
m
u
lt
ip
le
r
e
g
is
te
rs
f
ro
m
s
e
q
u
e
n
ti
al
m
e
m
o
ry
a
d
d
re
ss
e
s.
S
to
re
s
“d
e
cr
e
m
e
n
t
b
e
fo
re
”
an
d
l
o
ad
s
“i
n
cr
e
m
e
n
t
af
te
r”
.
M
u
lt
ip
le
r
e
g
is
te
rs
(n
e
g
at
iv
e
g
ro
w
in
g
s
ta
ck
)
l
d
m
i
a
S
P
!
,
{
r
1
,
r
3
,
r
4
,
f
p
}
13
1
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
1
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAAAdddddree ddddessssssssss ddddddddddddddrrr dddddddd
pppsssspppppppce peeeeeeeeeeee aaaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaa
P
C
ssssssss
eee
C
u
rr
en
t
in
st
ru
ct
io
n
o
ff
se
t
dddrrrr d
aaaaaaaaaaaaaaaaaaaaaaa
D
at
a
in
c
o
d
e
R
d
–
D
es
ti
n
at
io
n
+
<
l
a
b
e
l
>
:
l
d
r
<
c
>
<
q
>
<
R
d
>
,
< l a b e l >
l
d
r
<
c
>
<
q
>
<
R
d
>
,
[
P
C
,
#
+
/
–
<
o
f
f
s
e
t
>
]
R
e
ad
s
fr
o
m
a
d
at
a
ar
e
a
e
m
b
e
d
d
e
d
i
n
to
t
h
e
c
o
d
e
s
e
ct
io
n
.
Li
te
ra
l
ad
d
re
ss
in
g
N
o
te
t
h
e
re
i
s
n
o
st
o
re
v
e
rs
io
n
.
l
d
r
r
1
,
d
a
t
a
14
4
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
4
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
St
ra
ig
h
t
p
o
w
er
C
al
cu
la
te
:
c
:
=
a
^
b
m
o
v
r
1
,
#
7
;
a
m
o
v
r
2
,
#
1
1
;
b
;
h
a
s
t
o
b
e
n
o
n
–
n
e
g
a
t
i
v
e
m
o
v
r
3
,
#
1
;
c
p
o
w
e
r
:
c
b
z
r
2
,
e
n
d
_
p
o
w
e
r
;
e
x
p
o
n
e
n
t
z
e
r
o
?
m
u
l
r
3
,
r
1
s
u
b
r
2
,
#
1
b
p
o
w
e
r
e
n
d
_
p
o
w
e
r
:
n
o
p
;
c
=
a
^
b
H
o
w
m
an
y
it
e
ra
ti
o
n
s?
H
o
w
m
an
y
cy
cl
e
s?
7
7
7
7
7
7
7
7
7
7
7
7
11
$
$
$
$
$
$
$
$
$
$
=
14
0
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
0
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
m
em
o
ry
C
al
cu
la
te
a
g
ai
n
:
e
:
=
a
+
b
–
2
*
c
O
r
w
it
h
o
ve
rfl
o
w
c
h
e
ck
s:
l
d
r
r
1
,
[
f
p
,
#
–
1
2
]
l
d
r
r
2
,
[
f
p
,
#
–
1
6
]
a
d
d
s
r
1
,
r
1
,
r
2
b
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
l
d
r
r
2
,
[
f
p
,
#
–
2
0
]
a
d
d
s
r
2
,
r
2
,
r
2
b
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
s
u
b
s
r
1
,
r
1
,
r
2
b
v
s
O
v
e
r
f
l
o
w
;
b
r
a
n
c
h
i
f
o
v
e
r
f
l
o
w
i
s
s
e
t
s
t
r
r
1
,
[
f
p
,
#
–
2
4
]
… O
v
e
r
f
l
o
w
:
s
v
c
#
5
;
c
a
l
l
t
h
e
o
p
e
r
a
t
i
n
g
s
y
s
t
e
m
o
r
r
u
n
t
i
m
e
e
n
v
i
r
o
n
m
e
n
t
w
i
t
h
#
5
;
(
a
s
s
u
m
i
n
g
t
h
a
t
#
5
i
n
d
i
c
a
t
e
s
a
n
o
v
e
r
f
l
o
w
s
i
t
u
a
t
i
o
n
)
13
6
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
6
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Si
m
p
le
a
ri
th
m
et
ic
i
n
m
em
o
ry
C
al
cu
la
te
a
g
ai
n
:
e
:
=
a
+
b
–
2
*
c
b
u
t
n
o
w
a
, b
, c
a
n
d
e
a
re
s
to
re
d
in
m
e
m
o
ry
, r
e
la
ti
ve
t
o
a
n
a
d
d
re
ss
s
to
re
d
in
F
P
(
“F
ra
m
e
P
o
in
te
r”
):
a
i
s
h
e
ld
a
t
[
f
p
–
1
2
]
, b
a
t
[
f
p
–
1
6
]
, c
a
t
[
f
p
–
2
0
]
a
n
d
e
a
t
[
f
p
–
2
4
]
In
o
rd
e
r
to
d
o
a
ri
th
m
e
ti
c
w
e
n
e
e
d
t
o
l
o
ad
t
h
o
se
v
al
u
e
s
in
to
t
h
e
C
P
U
fi
rs
t
an
d
a
ft
e
rw
ar
d
s
w
e
n
e
e
d
t
o
s
to
re
t
h
e
r
e
su
lt
i
n
m
e
m
o
ry
:
l
d
r
r
1
,
[
f
p
,
#
–
1
2
]
l
d
r
r
2
,
[
f
p
,
#
–
1
6
]
a
d
d
r
1
,
r
1
,
r
2
l
d
r
r
2
,
[
f
p
,
#
–
2
0
]
l
s
l
r
2
,
r
2
,
#
1
s
u
b
r
1
,
r
1
,
r
2
s
t
r
r
1
,
[
f
p
,
#
–
2
4
]
N
o
ti
ce
t
h
at
t
h
is
t
im
e
w
e
o
n
ly
u
se
d
t
w
o
r
e
g
is
te
rs
.
13
2
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
3
2
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
A
R
M
v
7
-M
M
o
ve
d
at
a
in
a
n
d
o
u
t
o
f
th
e
C
P
U
sssss AAAAs AAdddddee dddddrrrrrreeeessssssssss
ppsssspppppppae paaaaaaaccccceeeeeeeeee aaaccccccccccceeeeeeeeeeee
R
s
–
St
ac
k
ad
d
re
ss
rrrrreeeeeeeee
cccccccccccccccccccccccccccccccc
R
el
at
iv
e
ce
ll
n
R
z
–
So
u
rc
e
sssssssssss
eeeeeeeeeeee
R
el
at
iv
e
ce
ll
1
R
x
–
So
u
rc
e
W
ri
te
-b
ac
k
…
…
…
s
t
m
i
a
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
l
d
m
d
b
<
c
>
<
q
>
<
R
s
>
{
!
}
,
< r e g i s t e r s >
S
to
re
s
m
u
lt
ip
le
r
e
g
is
te
rs
i
n
to
s
e
q
u
e
n
ti
al
m
e
m
o
ry
a
d
d
re
ss
e
s.
S
to
re
s
“i
n
cr
e
m
e
n
t
af
te
r”
a
n
d
l
o
ad
s
“d
e
cr
e
m
e
n
t
b
e
fo
re
”.
M
u
lt
ip
le
r
e
g
is
te
rs
(p
o
si
ti
ve
g
ro
w
in
g
s
ta
ck
)
s
t
m
i
a
r
9
!
,
{
r
1
,
r
3
,
r
4
,
f
p
}
14
9
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
9
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
B
as
ic
i
n
st
ru
ct
io
n
s
et
s
C
at
e
g
o
ry
S
id
e
e
ff
e
ct
s
A
R
M
v
7
–
M
A
ri
th
m
e
ti
c,
L
o
g
ic
S
e
ts
a
n
d
u
se
s
C
P
U
fl
a
g
s
a
d
d
,
a
d
c
,
q
a
d
d
,
s
u
b
,
s
b
c
,
q
s
u
b
,
r
s
b
,
m
u
l
,
m
l
a
,
m
l
s
,
u
d
i
v
,
s
d
i
v
,
u
m
u
l
l
,
u
m
l
a
l
,
s
m
u
l
l
,
s
m
l
a
l
,
a
n
d
,
b
i
c
,
o
r
r
,
o
r
n
,
e
o
r
,
c
m
p
,
c
m
n
,
t
s
t
,
t
e
q
M
o
ve
a
n
d
s
h
if
t
re
g
is
te
rs
m
o
v
,
l
s
r
,
a
s
r
,
l
s
l
,
r
o
r
,
r
r
x
B
ra
n
ch
in
g
U
se
s
C
P
U
fl
a
g
s
b
,
b
l
,
b
x
,
b
l
x
,
t
b
b
,
t
b
h
Lo
ad
&
S
to
re
Ef
fe
ct
s
m
e
m
o
ry
l
d
r
,
s
t
r
,
l
d
m
d
b
,
l
d
m
i
a
,
s
t
m
i
a
,
s
t
m
d
b
In
st
ru
ct
io
n
s
e
ts
i
n
t
h
e
fi
e
ld
:
R
IS
C
: P
o
w
e
r,
A
R
M
, M
IP
S
, A
lp
h
a,
S
PA
R
K
, A
V
R
, P
IC
, …
C
IS
C
: x
86
, Z
80
, 6
50
2,
6
80
00
, …
O
ve
r
50
b
il
li
o
n
C
P
U
s
o
n
th
is
p
la
n
e
t
ar
e
r
u
n
n
in
g
A
R
M
i
n
st
ru
ct
io
n
s
e
ts
14
5
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
5
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
M
o
re
p
o
w
er
C
al
cu
la
te
:
c
:
=
a
^
b
m
o
v
r
1
,
#
7
;
a
m
o
v
r
2
,
#
1
1
;
b
;
h
a
s
t
o
b
e
n
o
n
–
n
e
g
a
t
i
v
e
m
o
v
r
3
,
#
1
;
c
m
o
v
r
4
,
r
1
;
b
a
s
e
a
t
o
t
h
e
p
o
w
e
r
s
o
f
t
w
o
,
s
t
a
r
t
i
n
g
w
i
t
h
a
^
1
p
o
w
e
r
:
c
b
z
r
2
,
e
n
d
_
p
o
w
e
r
;
e
x
p
o
n
e
n
t
z
e
r
o
?
t
s
t
r
2
,
#
0
b
1
;
r
i
g
h
t
–
m
o
s
t
b
i
t
o
f
e
x
p
o
n
e
n
t
s
e
t
?
b
e
q
s
k
i
p
;
s
k
i
p
t
h
i
s
p
o
w
e
r
i
f
n
o
t
m
u
l
r
3
,
r
4
;
m
u
l
t
i
p
l
y
t
h
e
c
u
r
r
e
n
t
p
o
w
e
r
i
n
t
o
r
e
s
u
l
t
s
k
i
p
:
m
u
l
r
4
,
r
4
;
c
a
l
c
u
l
a
t
e
n
e
x
t
p
o
w
e
r
l
s
r
r
2
,
#
1
;
d
i
v
i
d
e
e
x
p
o
n
e
n
t
b
y
2
b
p
o
w
e
r
e
n
d
_
p
o
w
e
r
:
n
o
p
;
c
=
a
^
b
H
o
w
m
an
y
it
e
ra
ti
o
n
s?
H
o
w
m
an
y
cy
cl
e
s?
7
7
7
7
11
8
2
1
$
$
=
15
0
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
5
0
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
B
as
ic
i
n
st
ru
ct
io
n
s
et
s
C
at
e
g
o
ry
S
id
e
e
ff
e
ct
s
A
R
M
v
7
–
M
A
ri
th
m
e
ti
c,
L
o
g
ic
S
e
ts
a
n
d
u
se
s
C
P
U
fl
a
g
s
a
d
d
,
a
d
c
,
q
a
d
d
,
s
u
b
,
s
b
c
,
q
s
u
b
,
r
s
b
,
m
u
l
,
m
l
a
,
m
l
s
,
u
d
i
v
,
s
d
i
v
,
u
m
u
l
l
,
u
m
l
a
l
,
s
m
u
l
l
,
s
m
l
a
l
,
a
n
d
,
b
i
c
,
o
r
r
,
o
r
n
,
e
o
r
,
c
m
p
,
c
m
n
,
t
s
t
,
t
e
q
M
o
ve
a
n
d
s
h
if
t
re
g
is
te
rs
m
o
v
,
l
s
r
,
a
s
r
,
l
s
l
,
r
o
r
,
r
r
x
B
ra
n
ch
in
g
U
se
s
C
P
U
fl
a
g
s
b
,
b
l
,
b
x
,
b
l
x
,
t
b
b
,
t
b
h
Lo
ad
&
S
to
re
Ef
fe
ct
s
m
e
m
o
ry
l
d
r
,
s
t
r
,
l
d
m
d
b
,
l
d
m
i
a
,
s
t
m
i
a
,
s
t
m
d
b
W
h
at
’s
m
is
si
n
g
?
C
h
an
g
in
g
C
P
U
p
ri
vi
le
g
e
s
an
d
h
an
d
li
n
g
i
n
te
rr
u
p
ts
.
S
yn
ch
ro
n
iz
in
g
i
n
st
ru
ct
io
n
s
C
o
m
in
g
i
n
l
at
e
r
ch
ap
te
rs
ab
o
u
t
co
n
cu
rr
e
n
cy
a
n
d
o
p
e
ra
ti
n
g
s
ys
te
m
s.
14
6
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
6
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Ta
b
le
b
as
ed
b
ra
n
ch
in
g
t
b
b
<
c
>
<
q
>
[
<
R
n
>
,
<
R
m
>
]
;
f
o
r
t
a
b
l
e
s
o
f
o
f
f
s
e
t
b
y
t
e
s
(
8
b
i
t
)
t
b
h
<
c
>
<
q
>
[
<
R
n
>
,
<
R
m
>
,
l
s
l
#
1
]
;
f
o
r
t
a
b
l
e
s
o
f
o
f
f
s
e
t
h
a
l
f
w
o
r
d
s
(
1
6
b
i
t
)
C
o
m
m
o
n
u
sa
g
e
f
o
r
b
yt
e
(
8
b
it
)
ta
b
le
s
t
b
b
[
P
C
,
R
i
]
;
P
C
i
s
b
a
s
e
o
f
b
r
a
n
c
h
t
a
b
l
e
,
R
i
i
s
i
n
d
e
x
B
r
a
n
c
h
_
T
a
b
l
e
:
.
b
y
t
e
(
C
a
s
e
_
A
–
B
r
a
n
c
h
_
T
a
b
l
e
)
/
2
;
C
a
s
e
_
A
8
b
i
t
o
f
f
s
e
t
.
b
y
t
e
(
C
a
s
e
_
B
–
B
r
a
n
c
h
_
T
a
b
l
e
)
/
2
;
C
a
s
e
_
B
8
b
i
t
o
f
f
s
e
t
.
b
y
t
e
(
C
a
s
e
_
C
–
B
r
a
n
c
h
_
T
a
b
l
e
)
/
2
;
C
a
s
e
_
C
8
b
i
t
o
f
f
s
e
t
.
b
y
t
e
0
x
0
0
;
P
a
d
d
i
n
g
t
o
r
e
–
a
l
i
g
n
w
i
t
h
h
a
l
f
w
o
r
d
b
o
u
n
d
a
r
i
e
s
C
a
s
e
_
A
:
…
;
a
n
y
i
n
s
t
r
u
c
t
i
o
n
s
e
q
u
e
n
c
e
b
E
n
d
_
C
a
s
e
;
“
b
r
e
a
k
o
u
t
”
C
a
s
e
_
B
:
…
;
a
n
y
i
n
s
t
r
u
c
t
i
o
n
s
e
q
u
e
n
c
e
b
E
n
d
_
C
a
s
e
;
“
b
r
e
a
k
o
u
t
”
C
a
s
e
_
C
:
…
;
a
n
y
i
n
s
t
r
u
c
t
i
o
n
s
e
q
u
e
n
c
e
E
n
d
_
C
a
s
e
:
15
1
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
5
1
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
1
)
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
•
In
st
ru
ct
io
n
f
o
rm
at
s
•
R
e
g
is
te
r
se
ts
•
In
st
ru
ct
io
n
e
n
co
d
in
g
•
A
ri
th
m
et
ic
/
L
o
gi
c
in
st
ru
ct
io
n
s
in
si
d
e
th
e
C
P
U
•
S
u
m
m
at
io
n
, S
u
b
tr
ac
ti
o
n
, M
u
lt
ip
li
ca
ti
o
n
, D
iv
is
io
n
•
Lo
g
ic
a
n
d
s
h
if
t
o
p
e
ra
ti
o
n
s
•
Lo
ad
/
S
to
re
a
n
d
a
d
d
re
ss
in
g
m
o
d
es
•
D
ir
e
ct
, r
e
la
ti
ve
, i
n
d
e
xe
d
, a
n
d
a
u
to
-i
n
d
e
x-
in
cr
e
m
e
n
t
ad
d
re
ss
in
g
f
o
rm
s
•
B
ra
n
ch
in
g
•
C
o
n
d
it
io
n
al
b
ra
n
ch
in
g
a
n
d
u
n
co
n
d
it
io
n
al
j
u
m
p
s.
Su
m
m
ar
y
14
7
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
7
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
Ta
b
le
b
as
ed
b
ra
n
ch
in
g
t
b
b
<
c
>
<
q
>
[
<
R
n
>
,
<
R
m
>
]
;
f
o
r
t
a
b
l
e
s
o
f
o
f
f
s
e
t
b
y
t
e
s
(
8
b
i
t
)
t
b
h
<
c
>
<
q
>
[
<
R
n
>
,
<
R
m
>
,
l
s
l
#
1
]
;
f
o
r
t
a
b
l
e
s
o
f
o
f
f
s
e
t
h
a
l
f
w
o
r
d
s
(
1
6
b
i
t
)
C
o
m
m
o
n
u
sa
g
e
f
o
r
h
al
fw
o
rd
(
16
b
it
)
ta
b
le
s
t
b
h
[
P
C
,
R
i
,
l
s
l
#
1
]
;
P
C
u
s
e
d
a
s
b
a
s
e
o
f
b
r
a
n
c
h
t
a
b
l
e
,
R
i
i
s
i
n
d
e
x
B
r
a
n
c
h
_
T
a
b
l
e
:
.
h
w
o
r
d
(
C
a
s
e
_
A
–
B
r
a
n
c
h
_
T
a
b
l
e
)
/
2
;
C
a
s
e
_
A
1
6
b
i
t
o
f
f
s
e
t
.
h
w
o
r
d
(
C
a
s
e
_
B
–
B
r
a
n
c
h
_
T
a
b
l
e
)
/
2
;
C
a
s
e
_
B
1
6
b
i
t
o
f
f
s
e
t
.
h
w
o
r
d
(
C
a
s
e
_
C
–
B
r
a
n
c
h
_
T
a
b
l
e
)
/
2
;
C
a
s
e
_
C
1
6
b
i
t
o
f
f
s
e
t
C
a
s
e
_
A
:
…
;
a
n
y
i
n
s
t
r
u
c
t
i
o
n
s
e
q
u
e
n
c
e
b
E
n
d
_
C
a
s
e
;
“
b
r
e
a
k
o
u
t
”
C
a
s
e
_
B
:
…
;
a
n
y
i
n
s
t
r
u
c
t
i
o
n
s
e
q
u
e
n
c
e
b
E
n
d
_
C
a
s
e
;
“
b
r
e
a
k
o
u
t
”
C
a
s
e
_
C
:
…
;
a
n
y
i
n
s
t
r
u
c
t
i
o
n
s
e
q
u
e
n
c
e
E
n
d
_
C
a
s
e
:
14
8
H
ar
d
w
ar
e
/S
o
ft
w
ar
e
I
n
te
rf
ac
e
©
2
0
2
1
U
w
e
R
.
Z
im
m
er
, T
h
e
A
u
st
ra
li
an
N
at
io
n
al
U
n
iv
er
si
ty
p
ag
e
1
4
8
o
f
4
8
1
(
ch
ap
te
r
2
:
“H
ar
d
w
ar
e/
So
ft
w
ar
e
In
te
rf
ac
e”
u
p
t
o
p
ag
e
1
5
0
)
B
as
ic
i
n
st
ru
ct
io
n
s
et
s
C
at
e
g
o
ry
S
id
e
e
ff
e
ct
s
A
R
M
v
7
–
M
A
ri
th
m
e
ti
c,
L
o
g
ic
S
e
ts
a
n
d
u
se
s
C
P
U
fl
a
g
s
a
d
d
,
a
d
c
,
q
a
d
d
,
s
u
b
,
s
b
c
,
q
s
u
b
,
r
s
b
,
m
u
l
,
m
l
a
,
m
l
s
,
u
d
i
v
,
s
d
i
v
,
u
m
u
l
l
,
u
m
l
a
l
,
s
m
u
l
l
,
s
m
l
a
l
,
a
n
d
,
b
i
c
,
o
r
r
,
o
r
n
,
e
o
r
,
c
m
p
,
c
m
n
,
t
s
t
,
t
e
q
M
o
ve
a
n
d
s
h
if
t
re
g
is
te
rs
m
o
v
,
l
s
r
,
a
s
r
,
l
s
l
,
r
o
r
,
r
r
x
B
ra
n
ch
in
g
U
se
s
C
P
U
fl
a
g
s
b
,
b
l
,
b
x
,
b
l
x
,
t
b
b
,
t
b
h
Lo
ad
&
S
to
re
Ef
fe
ct
s
m
e
m
o
ry
l
d
r
,
s
t
r
,
l
d
m
d
b
,
l
d
m
i
a
,
s
t
m
i
a
,
s
t
m
d
b