CS代考 Search Engines

Search Engines

Text, Web And Media Analytics

Copyright By PowCoder代写 加微信 powcoder

Textual Data Pre-Processing

1. Processing Text
Text Statistics
Tokenizing
Stopping and stemming
Phrases and N-grams
2. Information Extraction
Named Entity
HMM – Hidden Markov Model
3. Document Structure and Markup
Hyperlinks

1. Processing Text
Converting documents to index terms
Matching the exact string of characters typed by the user is too restrictive
i.e., it doesn’t work very well in terms of effectiveness
Not all words are of equal value in a search
Sometimes not clear where words begin and end
Not even clear what a word is in some languages
e.g., Chinese, Korean

Text Statistics
Huge variety of words used in text but
Many statistical characteristics of word occurrences are predictable
e.g., distribution of word counts
Retrieval models and ranking algorithms depend heavily on statistical properties of words
e.g., important words occur often in documents but are not high frequency in collection

Zipf’s Law
Distribution of word frequencies is very skewed
a few words occur very often, many words hardly ever occur
e.g., two most common words (“the”, “of”) make up about 10% of all word occurrences in text documents

Zipf’s Law

Vocabulary Growth
As corpus grows, so does vocabulary size
Fewer new words when corpus is already large
Observed relationship (Heaps’ Law):
where v is vocabulary size (number of unique words), n is the number of words in corpus, k, β are parameters that vary for each corpus (typical values given are 10 ≤ k ≤ 100 and β ≈ 0.5)

Web Example
Heaps’ Law works with very large corpora
new words occurring even after seeing 30 million!
parameter values different than typical TREC values
New words come from a variety of sources
spelling errors, invented words (e.g. product, company names), code, other languages, email addresses, etc.
Search engines must deal with these large and growing vocabularies

Document Parsing
Document parsing involves the recognition of the content and structure of text documents.
Forming words from sequence of characters is called tokenizing.
Surprisingly complex in English, can be harder in other languages
Definition of Words in Early IR systems:
any sequence of alphanumeric characters of length 3 or more
terminated by a space or other special character
upper-case changed to lower-case

Tokenizing Example
“Bigcorp’s 2007 bi-annual report showed profits rose 10%.” 
“bigcorp 2007 annual report showed profits rose”
Too simple for search applications or even large-scale experiments
Why? Too much information lost
Small decisions in tokenizing can have major impact on effectiveness of some queries

Tokenizing Problems
Small words can be important in some queries, usually in combinations
xp, ma, pm, ben e king, el paso, master p, gm, j lo, world war II, VW (Volkswagen)
Both hyphenated and non-hyphenated forms of many words are common
Sometimes hyphen is not needed
e-bay, wal-mart, active-x, cd-rom, t-shirts
At other times, hyphens should be considered either as part of the word or a word separator
winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile, spanish-speaking

Tokenizing Problems cont.
Special characters are an important part of tags, URLs, code in documents
Capitalized words can have different meaning from lower case words
Bush, can be a part of a word, a part of a possessive, or just a mistake
rosie o’donnell, can’t, don’t, 80’s, 1890’s, men’s straw hats, master’s degree, england’s ten largest cities, shriner’s

Tokenizing Problems
Numbers can be important, including decimals
nokia 3250, top 10 courses, united 93, quicktime 6.5 pro, 92.3 the beat, 288358
Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other situations
I.B.M., Ph.D., cs.umass.edu, F.E.A.R.

Note: tokenizing steps for queries must be identical to steps for documents

Tokenizing Process
First step is to use parser (for a specific markup language, e.g. HTML) to identify appropriate parts of document to tokenize
Defer complex decisions to other components
word is any sequence of alphanumeric characters, terminated by a space or special character, with everything converted to lower-case
everything indexed
example: 92.3 → 92 3 but search finds documents with 92 and 3 adjacent
incorporate some rules to reduce dependence on query transformation components

Tokenizing Process cont.
Examples of rules used with TREC
Apostrophes in words ignored
o’connor → oconnor bob’s → bobs
Periods in abbreviations ignored
I.B.M. → ibm Ph.D. → ph d

>>> import string
>>> line =”

The British Fashion Awards will be held on October 22 at London’s Royal Albert Hall.


>>> line = line.replace(“

“, “”).replace(“

“, “”)
>>> line = line.translate(str.maketrans(”,”, string.digits)).translate(str.maketrans(string.punctuation, ‘ ‘*len(string.punctuation)))
‘The British Fashion Awards will be held on October at London s Royal Albert Hall ‘
>>> words=line.split()
[‘The’, ‘British’, ‘Fashion’, ‘Awards’, ‘will’, ‘be’, ‘held’, ‘on’, ‘October’, ‘at’, ‘London’, ‘s’, ‘Royal’, ‘Albert’, ‘Hall’]
>>> terms=[word.lower() for word in words if len(word)>2]
[‘the’, ‘british’, ‘fashion’, ‘october’, ‘royal’, ‘hall’, ‘will’, ‘albert’, ‘london’, ‘held’, ‘awards‘]

Function words (determiners, prepositions) have little meaning on their own; and
High occurrence frequencies
Treated as stopwords (i.e. removed)
reduce index space, improve response time, improve effectiveness
Can be important in combinations
e.g., “to be or not to be”

Stopping cont.
Stopword list can be created from high-frequency words or based on a standard list
Lists are customized for applications, domains, and even parts of documents
e.g., “click” is a good stopword for anchor text
Best policy is to index all words in documents, make decisions about which words to use at query time

Many morphological variations of words
inflectional (plurals, tenses)
derivational (making verbs nouns etc.)
In most cases, these have the same or very similar meanings
Stemmers attempt to reduce morphological variations of words to a common stem
usually involves removing suffixes
Can be done at indexing time or as part of query processing (like stopwords)
——屈折变化(复数,时态)
——派生变化(使动词成为名词等)

在大多数情况下,它们有相同或非常相似的含义

词干研究者试图将单词的形态变化减少到一个共同的词干,通常需要去除后缀

可以在索引时完成,也可以作为查询处理的一部分完成(如stopwords)

Stemming cont.
Generally a small but significant effectiveness improvement
can be crucial for some languages
e.g., 5-10% improvement for English, up to 50% in Arabic

Words with the Arabic root ktb

Two basic types
Dictionary-based: uses lists of related words
Algorithmic: uses program to determine related words
Algorithmic stemmers
suffix-s: remove ‘s’ endings assuming plural
e.g., cats → cat, lakes → lake, wiis → wii
Many false negatives (have different stems): triangle → triangular
Some false positives (have the same stem): policy → police

Porter Stemmer
Algorithmic stemmer used in IR experiments since the 70s
Consists of a series of rules designed to the longest possible suffix at each step
Effective in TREC
Produces stems not words
Makes a number of errors and difficult to modify

>>> import os
>>> os.chdir (‘C:\\2020\\Python_code\\workshop_tutor\\wk_solutions’)
>>> os.getcwd()
‘C:\\2020\\Python_code\\workshop_tutor\\wk_solutions’
>>> from stemming.porter2 import stem
>>> stems=[stem(term) for term in terms]
[‘the’, ‘british’, ‘fashion’, ‘octob’, ‘royal’, ‘hall’, ‘will’, ‘albert’, ‘london’, ‘held’, ‘award’]

Porter Stemmer
Example step (1 of 5)

Porter Stemmer
Porter2 stemmer addresses some of these issues
Approach has been used with other languages

Hybrid algorithmic-dictionary
Word checked in dictionary
If present, either left alone or replaced with “exception”
If not present, word is checked for suffixes that could be removed
After removal, dictionary is checked again
Produces words not stems
Comparable effectiveness
Lower false positive rate, somewhat higher false negative

Stemmer Comparison

Which stemmer is better?

Phrases and N-grams
Many queries are 2-3 word phrases
Phrases are
More precise than single words
e.g., documents containing “black sea” vs. two words “black” and “sea”
Less ambiguous
e.g., “big apple” vs. “apple”
Can be difficult for ranking when we use them
e.g., Given query “fishing supplies”, how do we score documents with
exact phrase many times, exact phrase just once, individual words in same sentence, same paragraph, whole document, variations on words?

Text processing issue – how are phrases recognized?
Three possible approaches:
Identify syntactic phrases using a part-of-speech (POS) tagger
Use word n-grams
Store word positions in indexes and use proximity operators in queries

POS Tagging
POS taggers use statistical models of text to predict syntactic tags of words
Example tags:
NN (singular noun), NNS (plural noun), VB (verb), VBD (verb, past tense), VBN (verb, past participle), IN (preposition), JJ (adjective), CC (conjunction, e.g., “and”, “or”), PRP (pronoun), and MD (modal auxiliary, e.g., “can”, “will”).
Phrases can then be defined as simple noun groups, for example

Pos Tagging Example

Python nltk
> pip3 install nltk

>>> import nltk
>>> from nltk.tokenize import word_tokenize

You may need to do
>>> nltk.download(‘punkt’)
>>> nltk.download(‘averaged_perceptron_tagger’)

>>> text = word_tokenize(“Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.”)
>>> text = [x for x in text if len(x)>1]
[‘Document’, ‘will’, ‘describe’, ‘marketing’, ‘strategies’, ‘carried’, ‘out’, ‘by’, ‘U.S.’, ‘companies’, ‘for’, ‘their’, ‘agricultural’, ‘chemicals’, ‘report’, ‘predictions’, ‘for’, ‘market’, ‘share’, ‘of’, ‘such’, ‘chemicals’, ‘or’, ‘report’, ‘market’, ‘statistics’, ‘for’, ‘agrochemicals’, ‘pesticide’, ‘herbicide’, ‘fungicide’, ‘insecticide’, ‘fertilizer’, ‘predicted’, ‘sales’, ‘market’, ‘share’, ‘stimulate’, ‘demand’, ‘price’, ‘cut’, ‘volume’, ‘of’, ‘sales’]
>>> pos_results = nltk.pos_tag(text)
>>> pos_results
[(‘Document’, ‘NNP’), (‘will’, ‘MD’), (‘describe’, ‘VB’), (‘marketing’, ‘NN’), (‘strategies’, ‘NNS’), (‘carried’, ‘VBD’), (‘out’, ‘RP’), (‘by’, ‘IN’), (‘U.S.’, ‘NNP’), (‘companies’, ‘NNS’), (‘for’, ‘IN’), (‘their’, ‘PRP$’), (‘agricultural’, ‘JJ’), (‘chemicals’, ‘NNS’), (‘report’, ‘VBP’), (‘predictions’, ‘NNS’), (‘for’, ‘IN’), (‘market’, ‘NN’), (‘share’, ‘NN’), (‘of’, ‘IN’), (‘such’, ‘JJ’), (‘chemicals’, ‘NNS’), (‘or’, ‘CC’), (‘report’, ‘NN’), (‘market’, ‘NN’), (‘statistics’, ‘NNS’), (‘for’, ‘IN’), (‘agrochemicals’, ‘NNS’), (‘pesticide’, ‘JJ’), (‘herbicide’, ‘NN’), (‘fungicide’, ‘JJ’), (‘insecticide’, ‘JJ’), (‘fertilizer’, ‘NN’), (‘predicted’, ‘VBD’), (‘sales’, ‘NNS’), (‘market’, ‘NN’), (‘share’, ‘NN’), (‘stimulate’, ‘JJ’), (‘demand’, ‘NN’), (‘price’, ‘NN’), (‘cut’, ‘NN’), (‘volume’, ‘NN’), (‘of’, ‘IN’), (‘sales’, ‘NNS’)]

The POS tagger in the NLTK library outputs specific tags for certain words. The list of POS tags can be found at

Example Noun Phrases

Word N-Grams
POS tagging too slow for large collections
Simpler definition – phrase is any sequence of n words – known as n-grams
bigram: 2 word sequence, trigram: 3 word sequence, unigram: single words
N-grams also used at character level for applications such as OCR
N-grams typically formed from overlapping sequences of words
i.e. move n-word “window” one word at a time in document
stems = [‘the’, ‘british’, ‘fashion’, ‘octob’, ‘royal’, ‘hall’, ‘will’, ‘albert’, ‘london’, ‘held’, ‘award’]

>>> bigrams = [stems[i]+’ ‘+stems[i+1] for i in range(len(stems)-1)]
>>> bigrams
[‘the british’, ‘british fashion’, ‘fashion octob’, ‘octob royal’, ‘royal hall’, ‘hall will’, ‘will albert’, ‘albert london’, ‘london held’, ‘held award’]
>>> trigrams = [stems[i]+’ ‘+stems[i+1]+’ ‘+stems[i+2] for i in range(len(stems)-2)]
>>> trigrams
[‘the british fashion’, ‘british fashion octob’, ‘fashion octob royal’, ‘octob royal hall’, ‘royal hall will’, ‘hall will albert’, ‘will albert london’, ‘albert london held’, ‘london held award’]

Frequent n-grams are more likely to be meaningful phrases
N-grams form a Zipf distribution
Better fit than words alone
Could index all n-grams up to specified length
Much faster than POS tagging
Uses a lot of storage
e.g., document containing 1,000 words would contain 3,990 instances of word n-grams of length 2 ≤ n ≤ 5

N-gram Examples from Several Disciplines

Google N-Grams
Web search engines index n-grams
Google sample:

Most frequent trigram in English is “all rights reserved”
How to select a small set of useful n-grams [2]

2. Information Extraction
Automatically extract structure from text
annotate document using tags to identify extracted structure
Named entity recognition
identify words that refer to something of interest in a particular application
e.g., people, companies, locations, dates, product names, prices, etc.

Named Entity Recognition
Example showing semantic annotation of text using XML tags
Information extraction also includes document structure and more complex features such as relationships and events

Approaches for Named Entity Recognition
Rule-based
Uses lexicons (lists of words and phrases) that categorize names
e.g., locations, peoples’ names, organizations, etc.
Rules also used to verify or find new entity names
e.g., “ street” for addresses
, ” or “in ” to verify city names
, , ” to find new cities
<name>” to find new names</p> <p>Approaches for Named Entity Recognition cont.<br /> Rules either developed manually by trial and error or using machine learning techniques<br /> Statistical<br /> uses a probabilistic model of the words in and around an entity<br /> probabilities estimated using training data (manually annotated text)<br /> Hidden Markov Model (HMM) is one approach</p> <p>HMM for Extraction<br /> Resolve ambiguity in a word using context (the words that surround it)<br /> e.g., “marathon” is a location or a sporting event, “boston marathon” is a specific sporting event<br /> Model context using a generative model of the sequence of words<br /> Markov property: the next word in a sequence depends only on a small number of the previous words</p> <p>HMM for Extraction cont.<br /> Markov Model describes a process as a collection of states with transitions between them<br /> each transition has a probability associated with it<br /> next state depends only on current state and transition probabilities<br /> Hidden Markov Model<br /> each state has a set of possible outputs<br /> outputs have probabilities</p> <p>Examples of MM and HMM</p> <p>The left is a MM to describe the possible states (categories) of a sentence. It can be extended to an HMM if each state is associated with a probability distribution over words (the output).<br /> The right one is an HMM which assumes a patient has two states:  “Healthy” and “Fever”. A doctor cannot see the (hidden) states directly; but the patient can tell the doctor that she/he is “normal”, “cold”, or “dizzy” (the observations).</p> <p>HMM for Extraction<br /> Could generate sentences with this model<br /> To recognize named entities, find sequence of “labels” that give highest probability for the sentence<br /> only the outputs (words) are visible or observed<br /> states are “hidden”<br /> e.g., <start><name><not-an-entity><location><not-an-entity><end><br /> Viterbi algorithm used for recognition</p> <p>Inputs and output of HMM<br /> The observation space O, e.g., O is a set of words.<br /> The state space S , e.g., S includes entities, such as, “location”, “person”, “organization” and “not-an-entity”; and the initial probabilities pi of each state si or entity.<br /> Transition matrix A, where Aij is the transition probability of transiting from state si to state sj.<br /> Emission matrix B, where Bij is the probability of observing oj from state si<br /> a sequence of observation Y ( a sub-set of O in order)<br /> The most likely hidden state sequence X</p> <p>Inputs and output of HMM cont.<br /> p1 p2 … pK<br /> s1 s2 … sK<br /> s1 A11 A12 … A1K<br /> s2 A21 A22 … A2K<br /> sK AK1 AK2 … AKK</p> <p> o1 o2 … oN<br /> s1 B11 B12 … B1N<br /> s2 B21 B22 … B2N<br /> sK BK1 BK2 … BKN</p> <p>Initial probabilities<br /> All observations<br /> Input Sequence</p> <p>Named Entity Recognition<br /> Accurate recognition requires about 1M words of training data (1,500 news stories)<br /> may be more expensive than developing rules for some applications<br /> Both rule-based and statistical can achieve about 90% effectiveness for categories such as names, locations, organizations<br /> others, such as product name, can be much worse</p> <p>3. Document Structure and Markup<br /> Some parts of documents are more important than others<br /> Document parser recognizes structure using markup, such as HTML tags<br /> Headers, anchor text, bolded text all likely to be important<br /> Metadata can also be important<br /> Links used for link analysis</p> <p>Html Example</p> <p>HTML files show more structure, where each field or element in HTML is indicated by a start tag (such as </p> <h1>) and an optional end tag (e.g., </h1> <p>).<br /> Elements can have attributes (with values), given by attribute_name = ”value” pairs.<br /> The <head> element contains metadata that is not displayed by a browser.<br /> The main heading is indicated by the </p> <h1> tag , and terms that should be displayed in bold or italic are indicated by <b> or <i> tags etc.<br /> Links are commonly used, such as <a href=”/wiki/Fish” title=”Fish”> fish </a>.</p> <p>Hyperlinks<br /> Links are a key component of the Web.<br /> Important for navigation, but also for Web search<br /> e.g., <a href="http://example.com" >Example website</a><br /> “Example website” is the anchor text<br /> “http://example.com” is the destination link<br /> both are used by search engines</p> <p>Anchor Text<br /> Used as a description of the content of the destination page<br /> i.e., collection of anchor text in all links pointing to a page used as an additional text field<br /> Anchor text tends to be short, descriptive, and similar to query text<br /> Retrieval experiments have shown that anchor text has significant impact on effectiveness for some types of queries</p> <p>[1] Chapter 4 in text book – W. , Search Engines – Information retrieval in Practice; Pearson, 2010.<br /> [2] M. Albathan, Y. Li, Y. Xu, Using extended random set to find specific patterns, in Proceedings of 2014 IEEE/WIC/ACM International Conference on Web Intelligence (Vol. 2), 11–14 August 2014, Warsaw, Poland, 2014, pp. 30-37 ( Paper Award, https://dl.acm.org/citation.cfm?id=2682826 ) </p> <p>Indexing Text and Ranking Documents</p> <p>/docProps/thumbnail.jpeg</p> <p>程序代写 <a href="https://powcoder.com/tag/代考/">CS代考</a> 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com</p> </div><!-- .entry-content .clear --> </div> </article><!-- #post-## --> <nav class="navigation post-navigation" aria-label="Post navigation"> <span class="screen-reader-text">Post navigation</span> <div class="nav-links"><div class="nav-previous"><a title="CS代考 IFN647 Text, Web And Media Analytics" href="https://powcoder.com/2021/09/30/cs%e4%bb%a3%e8%80%83-ifn647-text-web-and-media-analytics-2/" rel="prev"><span class="ast-left-arrow">←</span> Previous Post</a></div><div class="nav-next"><a title="代写代考 Week 10 Question Solutions" href="https://powcoder.com/2021/09/30/%e4%bb%a3%e5%86%99%e4%bb%a3%e8%80%83-week-10-question-solutions/" rel="next">Next Post <span class="ast-right-arrow">→</span></a></div></div> </nav><div class="ast-single-related-posts-container ast-container--fallback"><div class="ast-related-posts-title-section"> <h2 class="ast-related-posts-title"> Related Posts </h2> </div><div class="ast-related-posts-wrapper"> <article class="ast-related-post post-38 post type-post status-publish format-standard hentry category-uncategorized tag-matlab tag-simulation"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/matlab-simulation/" target="_self" rel="bookmark noopener noreferrer">matlab simulation</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/matlab/" rel="tag">matlab代写代考</a>, <a href="https://powcoder.com/tag/simulation/" rel="tag">simulation</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-39 post type-post status-publish format-standard hentry category-uncategorized tag-c"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/ab202-assignment-1-arkapong/" target="_self" rel="bookmark noopener noreferrer">AB202 Assignment 1: Arkapong</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/c/" rel="tag">c++代做</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-40 post type-post status-publish format-standard hentry category-uncategorized tag-c"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/msc-c-programming/" target="_self" rel="bookmark noopener noreferrer">MSc C++ Programming</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/c/" rel="tag">c++代做</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-41 post type-post status-publish format-standard hentry category-uncategorized tag-prolog"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/msc-assessed-prolog-lab-exercise-2/" target="_self" rel="bookmark noopener noreferrer">MSc Assessed Prolog Lab Exercise 2</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/prolog/" rel="tag">Prolog代写代考</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-49 post type-post status-publish format-standard hentry category-uncategorized tag-c tag-uml"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/spring-session2015assignment-1/" target="_self" rel="bookmark noopener noreferrer">Spring Session:2015:Assignment 1</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/c/" rel="tag">c++代做</a>, <a href="https://powcoder.com/tag/uml/" rel="tag">UML</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-51 post type-post status-publish format-standard hentry category-uncategorized tag-uml"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/assignment-2-inception-and-elaboration/" target="_self" rel="bookmark noopener noreferrer">Assignment 2: "Inception and Elaboration"</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/uml/" rel="tag">UML</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-55 post type-post status-publish format-standard hentry category-uncategorized tag-android tag-java"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/android-app/" target="_self" rel="bookmark noopener noreferrer">android app</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/android/" rel="tag">android</a>, <a href="https://powcoder.com/tag/java/" rel="tag">Java代写代考</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> <article class="ast-related-post post-57 post type-post status-publish format-standard hentry category-uncategorized tag-java tag-junit"> <div class="ast-related-posts-inner-section"> <div class="ast-related-post-content"> <div class="ast-related-post-featured-section ast-no-thumb"></div> <header class="entry-header related-entry-header"> <h3 class="ast-related-post-title entry-title"> <a href="https://powcoder.com/2016/06/21/comp220-software-development-tools/" target="_self" rel="bookmark noopener noreferrer">COMP220: Software Development Tools</a> </h3> <div class="entry-meta ast-related-cat-style--none ast-related-tag-style--none"><span class="ast-taxonomy-container cat-links default"><a href="https://powcoder.com/category/uncategorized/" rel="category tag">程序代写 CS代考</a></span> / <span class="ast-taxonomy-container tags-links default"><a href="https://powcoder.com/tag/java/" rel="tag">Java代写代考</a>, <a href="https://powcoder.com/tag/junit/" rel="tag">junit</a></span></div> </header> <div class="entry-content clear"> </div> </div> </div> </article> </div> </div> </main><!-- #main --> </div><!-- #primary --> <div class="widget-area secondary" id="secondary" itemtype="https://schema.org/WPSideBar" itemscope="itemscope"> <div class="sidebar-main" > <aside id="custom_html-2" class="widget_text widget widget_custom_html"><h2 class="widget-title">Contact</h2><div class="textwidget custom-html-widget"><ul> <li><strong>QQ: 1823890830</strong></li> <li><strong>微信号(WeChat): powcoder</strong></li> <li><img data-recalc-dims="1" class="alignnone wp-image-366" src="https://i0.wp.com/powcoder.com/wp-content/uploads/2021/01/powcoder.jpg?resize=133%2C133&ssl=1" alt="myweixin" width="133" height="133"/></li> <li><strong>Email: <a href="mailto:powcoder@163.com">powcoder@163.com</a></strong></li> </ul> <ul> <li><strong>请加微信或QQ发要求</strong></li> <li><strong>Contact me through WeChat</strong></li> </ul> </div></aside><aside id="categories-2" class="widget widget_categories"><h2 class="widget-title">Categories</h2><nav aria-label="Categories"> <ul> <li class="cat-item cat-item-245"><a href="https://powcoder.com/category/machine-learning/">机器学习代写代考 machine learning</a> </li> <li class="cat-item cat-item-242"><a href="https://powcoder.com/category/database-db-sql/">数据库代写代考 DB Database SQL</a> </li> <li class="cat-item cat-item-244"><a href="https://powcoder.com/category/data-structure-algorithm/">数据结构算法代写代考 data structure algorithm</a> </li> <li class="cat-item cat-item-239"><a href="https://powcoder.com/category/%e4%ba%ba%e5%b7%a5%e6%99%ba%e8%83%bd-ai-artificial-intelligence/">人工智能 AI Artificial Intelligence</a> </li> <li class="cat-item cat-item-247"><a href="https://powcoder.com/category/compiler/">编译器原理 Compiler</a> </li> <li class="cat-item cat-item-254"><a href="https://powcoder.com/category/network-socket/">计算机网络 套接字编程 computer network socket programming</a> </li> <li class="cat-item cat-item-240"><a href="https://powcoder.com/category/hadoop-map-reduce-spark-hbase/">大数据 Hadoop Map Reduce Spark HBase</a> </li> <li class="cat-item cat-item-241"><a href="https://powcoder.com/category/%e6%93%8d%e4%bd%9c%e7%b3%bb%e7%bb%9fosoperating-system/">操作系统OS代写代考 (Operating System)</a> </li> <li class="cat-item cat-item-250"><a href="https://powcoder.com/category/computer-architecture/">计算机体系结构代写代考 Computer Architecture</a> </li> <li class="cat-item cat-item-251"><a href="https://powcoder.com/category/computer-graphics-opengl-webgl/">计算机图形学 Computer Graphics opengl webgl</a> </li> <li class="cat-item cat-item-249"><a href="https://powcoder.com/category/nlp/">自然语言处理 NLP natural language processing</a> </li> <li class="cat-item cat-item-383"><a href="https://powcoder.com/category/%e5%b9%b6%e8%a1%8c%e8%ae%a1%e7%ae%97/">并行计算</a> </li> <li class="cat-item cat-item-253"><a href="https://powcoder.com/category/computation-theory/">计算理论 Theory of Computation</a> </li> <li class="cat-item cat-item-252"><a href="https://powcoder.com/category/computer-security/">计算机安全密码学computer security cryptography</a> </li> <li class="cat-item cat-item-246"><a href="https://powcoder.com/category/sys-programming/">系统编程 System programming</a> </li> <li class="cat-item cat-item-367"><a href="https://powcoder.com/category/%e6%95%b0%e5%80%bc%e7%a7%91%e5%ad%a6%e8%ae%a1%e7%ae%97/">数值科学计算</a> </li> <li class="cat-item cat-item-255"><a href="https://powcoder.com/category/%e8%ae%a1%e7%ae%97%e6%9c%ba%e8%a7%86%e8%a7%89compute-vision/">计算机视觉代写代考(Compute Vision)</a> </li> <li class="cat-item cat-item-248"><a href="https://powcoder.com/category/web/">网页应用 Web Application</a> </li> <li class="cat-item cat-item-401"><a href="https://powcoder.com/category/%e5%88%86%e5%b8%83%e5%bc%8f%e7%b3%bb%e7%bb%9f/">分布式系统</a> </li> <li class="cat-item cat-item-640"><a href="https://powcoder.com/category/%e7%ac%94%e8%af%95%e9%9d%a2%e8%af%95/">笔试面试</a> </li> <li class="cat-item cat-item-403"><a href="https://powcoder.com/category/%e5%87%bd%e6%95%b0%e5%bc%8f%e7%bc%96%e7%a8%8b/">函数式编程</a> </li> <li class="cat-item cat-item-243"><a href="https://powcoder.com/category/%e6%95%b0%e6%8d%ae%e6%8c%96%e6%8e%98-data-mining/">数据挖掘 Data Mining</a> </li> <li class="cat-item cat-item-364"><a href="https://powcoder.com/category/%e7%a6%bb%e6%95%a3%e6%95%b0%e5%ad%a6/">离散数学代写代考 (Discrete mathematics)</a> </li> <li class="cat-item cat-item-384"><a href="https://powcoder.com/category/%e8%bd%af%e4%bb%b6%e5%b7%a5%e7%a8%8b/">软件工程</a> </li> <li class="cat-item cat-item-551"><a href="https://powcoder.com/category/%e7%bc%96%e7%a8%8b%e8%af%ad%e8%a8%80-programming-language/">编程语言 Programming Language</a> </li> <li class="cat-item cat-item-594"><a href="https://powcoder.com/category/%e7%bb%9f%e8%ae%a1%e4%bb%a3%e5%86%99%e4%bb%a3%e8%80%83/">统计代写代考</a> </li> <li class="cat-item cat-item-574"><a href="https://powcoder.com/category/%e8%bf%90%e7%ad%b9%e5%ad%a6-operation-research/">运筹学 Operation Research</a> </li> </ul> </nav></aside><aside id="tag_cloud-3" class="widget widget_tag_cloud"><h2 class="widget-title">Tag</h2><nav aria-label="Tag"><div class="tagcloud"><a href="https://powcoder.com/tag/algorithm/" class="tag-cloud-link tag-link-469 tag-link-position-1" style="font-size: 18px;" aria-label="Algorithm算法代写代考 (15,146 items)">Algorithm算法代写代考</a><a href="https://powcoder.com/tag/java/" class="tag-cloud-link tag-link-298 tag-link-position-2" style="font-size: 16.91156462585px;" aria-label="Java代写代考 (7,274 items)">Java代写代考</a><a href="https://powcoder.com/tag/database/" class="tag-cloud-link tag-link-414 tag-link-position-3" style="font-size: 16.503401360544px;" aria-label="database (5,442 items)">database</a><a href="https://powcoder.com/tag/data-structure/" class="tag-cloud-link tag-link-501 tag-link-position-4" style="font-size: 16.43537414966px;" aria-label="data structure (5,188 items)">data structure</a><a href="https://powcoder.com/tag/python/" class="tag-cloud-link tag-link-331 tag-link-position-5" style="font-size: 16.299319727891px;" aria-label="Python代写代考 (4,816 items)">Python代写代考</a><a href="https://powcoder.com/tag/compiler/" class="tag-cloud-link tag-link-472 tag-link-position-6" style="font-size: 16.027210884354px;" aria-label="compiler (4,000 items)">compiler</a><a href="https://powcoder.com/tag/scheme/" class="tag-cloud-link tag-link-338 tag-link-position-7" style="font-size: 15.823129251701px;" aria-label="Scheme代写代考 (3,502 items)">Scheme代写代考</a><a href="https://powcoder.com/tag/c-4/" class="tag-cloud-link tag-link-499 tag-link-position-8" style="font-size: 15.823129251701px;" aria-label="C语言代写 (3,489 items)">C语言代写</a><a href="https://powcoder.com/tag/ai/" class="tag-cloud-link tag-link-369 tag-link-position-9" style="font-size: 15.176870748299px;" aria-label="AI代写 (2,216 items)">AI代写</a><a href="https://powcoder.com/tag/c-3/" class="tag-cloud-link tag-link-491 tag-link-position-10" style="font-size: 14.700680272109px;" aria-label="c++代写 (1,633 items)">c++代写</a><a href="https://powcoder.com/tag/sql/" class="tag-cloud-link tag-link-395 tag-link-position-11" style="font-size: 14.530612244898px;" aria-label="SQL代写代考 (1,457 items)">SQL代写代考</a><a href="https://powcoder.com/tag/haskell/" class="tag-cloud-link tag-link-291 tag-link-position-12" style="font-size: 14.530612244898px;" aria-label="Haskell代写代考 (1,453 items)">Haskell代写代考</a><a href="https://powcoder.com/tag/javascript/" class="tag-cloud-link tag-link-299 tag-link-position-13" style="font-size: 14.462585034014px;" aria-label="javascript (1,395 items)">javascript</a><a href="https://powcoder.com/tag/concurrency/" class="tag-cloud-link tag-link-503 tag-link-position-14" style="font-size: 14.428571428571px;" aria-label="concurrency (1,355 items)">concurrency</a><a href="https://powcoder.com/tag/matlab/" class="tag-cloud-link tag-link-309 tag-link-position-15" style="font-size: 14.360544217687px;" aria-label="matlab代写代考 (1,281 items)">matlab代写代考</a><a href="https://powcoder.com/tag/finance/" class="tag-cloud-link tag-link-282 tag-link-position-16" style="font-size: 14.292517006803px;" aria-label="finance (1,221 items)">finance</a><a href="https://powcoder.com/tag/interpreter/" class="tag-cloud-link tag-link-297 tag-link-position-17" style="font-size: 14.190476190476px;" aria-label="interpreter (1,144 items)">interpreter</a><a href="https://powcoder.com/tag/mips/" class="tag-cloud-link tag-link-313 tag-link-position-18" style="font-size: 14.190476190476px;" aria-label="MIPS汇编代写代考 (1,137 items)">MIPS汇编代写代考</a><a href="https://powcoder.com/tag/data-mining/" class="tag-cloud-link tag-link-271 tag-link-position-19" style="font-size: 13.986394557823px;" aria-label="data mining (994 items)">data mining</a><a href="https://powcoder.com/tag/decision-tree/" class="tag-cloud-link tag-link-273 tag-link-position-20" style="font-size: 13.952380952381px;" aria-label="decision tree (982 items)">decision tree</a><a href="https://powcoder.com/tag/deep-learning/" class="tag-cloud-link tag-link-274 tag-link-position-21" style="font-size: 13.952380952381px;" aria-label="deep learning深度学习代写代考 (980 items)">deep learning深度学习代写代考</a><a href="https://powcoder.com/tag/prolog/" class="tag-cloud-link tag-link-329 tag-link-position-22" style="font-size: 13.918367346939px;" aria-label="Prolog代写代考 (957 items)">Prolog代写代考</a><a href="https://powcoder.com/tag/file-system/" class="tag-cloud-link tag-link-281 tag-link-position-23" style="font-size: 13.850340136054px;" aria-label="file system (902 items)">file system</a><a href="https://powcoder.com/tag/c/" class="tag-cloud-link tag-link-265 tag-link-position-24" style="font-size: 13.578231292517px;" aria-label="c++代做 (764 items)">c++代做</a><a href="https://powcoder.com/tag/computer-architecture/" class="tag-cloud-link tag-link-507 tag-link-position-25" style="font-size: 13.47619047619px;" aria-label="computer architecture (712 items)">computer architecture</a><a href="https://powcoder.com/tag/er/" class="tag-cloud-link tag-link-433 tag-link-position-26" style="font-size: 13.47619047619px;" aria-label="ER (711 items)">ER</a><a href="https://powcoder.com/tag/gui/" class="tag-cloud-link tag-link-290 tag-link-position-27" style="font-size: 13.47619047619px;" aria-label="gui (711 items)">gui</a><a href="https://powcoder.com/tag/gpu/" class="tag-cloud-link tag-link-396 tag-link-position-28" style="font-size: 13.272108843537px;" aria-label="GPU (620 items)">GPU</a><a href="https://powcoder.com/tag/data-science/" class="tag-cloud-link tag-link-272 tag-link-position-29" style="font-size: 13.272108843537px;" aria-label="data science (615 items)">data science</a><a href="https://powcoder.com/tag/x86%e6%b1%87%e7%bc%96/" class="tag-cloud-link tag-link-514 tag-link-position-30" style="font-size: 13.238095238095px;" aria-label="x86汇编代写代考 (606 items)">x86汇编代写代考</a><a href="https://powcoder.com/tag/case-study/" class="tag-cloud-link tag-link-468 tag-link-position-31" style="font-size: 13.204081632653px;" aria-label="case study (586 items)">case study</a><a href="https://powcoder.com/tag/distributed-system/" class="tag-cloud-link tag-link-277 tag-link-position-32" style="font-size: 13.170068027211px;" aria-label="distributed system (576 items)">distributed system</a><a href="https://powcoder.com/tag/android/" class="tag-cloud-link tag-link-256 tag-link-position-33" style="font-size: 13.034013605442px;" aria-label="android (527 items)">android</a><a href="https://powcoder.com/tag/kernel/" class="tag-cloud-link tag-link-470 tag-link-position-34" style="font-size: 13.034013605442px;" aria-label="kernel (520 items)">kernel</a><a href="https://powcoder.com/tag/arm/" class="tag-cloud-link tag-link-483 tag-link-position-35" style="font-size: 13px;" aria-label="ARM汇编代写代考 (514 items)">ARM汇编代写代考</a></div> </nav></aside><aside id="block-4" class="widget widget_block"> <div class="wp-block-group is-layout-flow wp-block-group-is-layout-flow"><div class="wp-block-group__inner-container"><ul class="wp-block-latest-posts__list wp-block-latest-posts"><li><a class="wp-block-latest-posts__post-title" href="https://powcoder.com/2024/12/10/cs%e4%bb%a3%e8%80%83-cs-0447-computer-organization-and-assembly-language-midterm-project-conne/">CS代考 CS 0447 Computer Organization and Assembly Language Midterm Project – Conne</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://powcoder.com/2024/12/10/%e8%ae%a1%e7%ae%97%e6%9c%ba%e4%bb%a3%e5%86%99-cs7641-assignment-4-markov-decision-processes-fall-2024/">计算机代写 CS7641 Assignment 4 Markov Decision Processes Fall 2024</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://powcoder.com/2024/12/10/%e8%ae%a1%e7%ae%97%e6%9c%ba%e4%bb%a3%e5%86%99-comp9313-project-3/">计算机代写 COMP9313 Project 3</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://powcoder.com/2024/12/01/cs%e4%bb%a3%e5%86%99-cs7641-assignment-4-markov-decision-processes-fall-2024/">CS代写 CS7641 Assignment 4 Markov Decision Processes Fall 2024</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://powcoder.com/2024/12/01/cs%e4%bb%a3%e5%86%99-comp9313-project-3/">CS代写 COMP9313 Project 3</a></li> </ul></div></div> </aside> </div><!-- .sidebar-main --> </div><!-- #secondary --> </div> <!-- ast-container --> </div><!-- #content --> <footer class="site-footer" id="colophon" itemtype="https://schema.org/WPFooter" itemscope="itemscope" itemid="#colophon"> <div class="site-below-footer-wrap ast-builder-grid-row-container site-footer-focus-item ast-builder-grid-row-full ast-builder-grid-row-tablet-full ast-builder-grid-row-mobile-full ast-footer-row-stack ast-footer-row-tablet-stack ast-footer-row-mobile-stack" data-section="section-below-footer-builder"> <div class="ast-builder-grid-row-container-inner"> <div class="ast-builder-footer-grid-columns site-below-footer-inner-wrap ast-builder-grid-row"> <div class="site-footer-below-section-1 site-footer-section site-footer-section-1"> <div class="ast-builder-layout-element ast-flex site-footer-focus-item ast-footer-copyright" data-section="section-footer-builder"> <div class="ast-footer-copyright"><p>Copyright © 2025 PowCoder代写 | Powered by <a href="https://wpastra.com/" rel="nofollow noopener" target="_blank">Astra WordPress Theme</a></p> </div> </div> </div> </div> </div> </div> </footer><!-- #colophon --> </div><!-- #page --> <link rel="stylesheet" href="https://powcoder.com/wp-content/cache/minify/12163.css" media="all" /> <script id="astra-theme-js-js-extra"> var astra = {"break_point":"921","isRtl":"","is_scroll_to_id":"","is_scroll_to_top":"","is_header_footer_builder_active":"1","responsive_cart_click":"flyout"}; </script> <script src="https://powcoder.com/wp-content/cache/minify/75800.js"></script> <script src="https://stats.wp.com/e-202502.js" id="jetpack-stats-js" data-wp-strategy="defer"></script> <script id="jetpack-stats-js-after"> _stq = window._stq || []; _stq.push([ "view", JSON.parse("{\"v\":\"ext\",\"blog\":\"132118579\",\"post\":\"73192\",\"tz\":\"8\",\"srv\":\"powcoder.com\",\"j\":\"1:14.2.1\"}") ]); _stq.push([ "clickTrackerInit", "132118579", "73192" ]); </script> <script> /(trident|msie)/i.test(navigator.userAgent)&&document.getElementById&&window.addEventListener&&window.addEventListener("hashchange",function(){var t,e=location.hash.substring(1);/^[A-z0-9_-]+$/.test(e)&&(t=document.getElementById(e))&&(/^(?:a|select|input|button|textarea)$/i.test(t.tagName)||(t.tabIndex=-1),t.focus())},!1); </script> </body> </html> <!-- Performance optimized by W3 Total Cache. Learn more: https://www.boldgrid.com/w3-total-cache/ Object Caching 47/584 objects using Disk Page Caching using Disk: Enhanced Content Delivery Network via N/A Minified using Disk Served from: powcoder.com @ 2025-01-10 12:41:26 by W3 Total Cache -->