CS计算机代考程序代写 ## —-echo=FALSE———————————————————-

## —-echo=FALSE———————————————————-
set.seed(1153)

## ————————————————————————
n <- 20 p.hat <- 6 / n p.hat z0 <- qnorm(0.95) p.hat + c(-1, 1) * z0 * sqrt(p.hat * (1 - p.hat) / n) ## ------------------------------------------------------------------------ num <- p.hat + z0^2 / (2 * n) + c(-1, 1) * z0 * sqrt(p.hat * (1 - p.hat) / n + z0^2 / (4 * n^2)) den <- 1 + z0^2 / n num / den ## ------------------------------------------------------------------------ prop.test(x = 6, n = 20, conf.level = 0.90, correct = FALSE) ## ------------------------------------------------------------------------ t <- binom.test(x = 6, n = 20, conf.level = 0.90) t names(t) # shows names of various objects returned by binom.test() t$conf.int # extracts the confidence interval ## ------------------------------------------------------------------------ p <- 0.3 # set the true proportion n <- 15 # set number of trials z0 <- qnorm(0.95) # quantile for 90% confidence level B <- 2500 # number of simulated samples result1 <- result2 <- result3 <- 1:B # empty vectors, to store results for (b in 1:B) { y <- rbinom(1, size = n, prob = p) # generate a binomial outcome p.hat <- y / n # sample proportion # Wald interval. int1 <- p.hat + c(-1, 1) * z0 * sqrt(p.hat * (1 - p.hat) / n) # Interval based on quadratic equation. num <- p.hat + z0^2 / (2 * n) + c(-1, 1) * z0 * sqrt(p.hat * (1 - p.hat) / n + z0^2 / (4 * n^2)) den <- 1 + z0^2 / n int2 <- num / den # Clopper-Pearson "exact" interval. t <- binom.test(y, n, conf.level = 0.90) int3 <- t$conf.int # Check if p is in the intervals and store results. result1[b] <- (int1[1] < p) & (p < int1[2]) result2[b] <- (int2[1] < p) & (p < int2[2]) result3[b] <- (int3[1] < p) & (p < int3[2]) } ## ------------------------------------------------------------------------ mean(result1) # coverage Wald CI mean(result2) # coverage quadratic CI mean(result3) # coverage Clopper-Pearson CI ## ----fig.height=4.5------------------------------------------------------ library(binom) p <- seq(0, 1, 0.001) coverage.wald <- binom.coverage(p, 25, method = "asymptotic")$coverage coverage.agresti <- binom.coverage(p, 25, method = "agresti-coull")$coverage plot( p, coverage.wald, type = "l", ylab = "coverage") lines(p, coverage.agresti, col = "blue", lwd = 2) abline(h = 0.95, col = "red") # desired coverage ## ------------------------------------------------------------------------ prop.test(x = c(141, 170), n = c(460, 440), correct = FALSE) ## ------------------------------------------------------------------------ prop.test(x = c(141, 170), n = c(460, 440), alternative = "less", correct = FALSE)