程序代写 jama_eig.h Source File

jama_eig.h Source File

Main Page   Namespace List   Compound List   File List   Compound Members  

Copyright By PowCoder代写 加微信 powcoder

jama_eig.h
Go to the documentation of this file.00001 #ifndef JAMA_EIG_H
00002 #define JAMA_EIG_H
00005 #include “tnt_array1d.h”
00006 #include “tnt_array2d.h”
00007 #include “tnt_math_utils.h”
00010 using namespace TNT;
00013 namespace JAMA
00066 template
00067 class Eigenvalue
00072 int n;
00074 int issymmetric; /* boolean*/
00078 TNT::Array1D d; /* real part */
00079 TNT::Array1D e; /* img part */
00082 TNT::Array2D V;
00087 TNT::Array2D H;
00093 TNT::Array1D ort;
00096 // Symmetric Householder reduction to tridiagonal form.
00098 void tred2() {
00100 // This is derived from the Algol procedures tred2 by
00101 // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
00102 // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
00103 // Fortran subroutine in EISPACK.
00105 for (int j = 0; j < n; j++) { 00106 d[j] = V[n-1][j]; 00107 } 00109 // Householder reduction to tridiagonal form. 00111 for (int i = n-1; i > 0; i–) {
00113 // Scale to avoid under/overflow.
00115 Real scale = 0.0;
00116 Real h = 0.0;
00117 for (int k = 0; k < i; k++) { 00118 scale = scale + abs(d[k]); 00119 } 00120 if (scale == 0.0) { 00121 e[i] = d[i-1]; 00122 for (int j = 0; j < i; j++) { 00123 d[j] = V[i-1][j]; 00124 V[i][j] = 0.0; 00125 V[j][i] = 0.0; 00126 } 00127 } else { 00129 // Generate Householder vector. 00131 for (int k = 0; k < i; k++) { 00132 d[k] /= scale; 00133 h += d[k] * d[k]; 00134 } 00135 Real f = d[i-1]; 00136 Real g = sqrt(h); 00137 if (f > 0) {
00138 g = -g;
00139 }
00140 e[i] = scale * g;
00141 h = h – f * g;
00142 d[i-1] = f – g;
00143 for (int j = 0; j < i; j++) { 00144 e[j] = 0.0; 00145 } 00147 // Apply similarity transformation to remaining columns. 00149 for (int j = 0; j < i; j++) { 00150 f = d[j]; 00151 V[j][i] = f; 00152 g = e[j] + V[j][j] * f; 00153 for (int k = j+1; k <= i-1; k++) { 00154 g += V[k][j] * d[k]; 00155 e[k] += V[k][j] * f; 00156 } 00157 e[j] = g; 00158 } 00159 f = 0.0; 00160 for (int j = 0; j < i; j++) { 00161 e[j] /= h; 00162 f += e[j] * d[j]; 00163 } 00164 Real hh = f / (h + h); 00165 for (int j = 0; j < i; j++) { 00166 e[j] -= hh * d[j]; 00167 } 00168 for (int j = 0; j < i; j++) { 00169 f = d[j]; 00170 g = e[j]; 00171 for (int k = j; k <= i-1; k++) { 00172 V[k][j] -= (f * e[k] + g * d[k]); 00173 } 00174 d[j] = V[i-1][j]; 00175 V[i][j] = 0.0; 00176 } 00177 } 00178 d[i] = h; 00179 } 00181 // Accumulate transformations. 00183 for (int i = 0; i < n-1; i++) { 00184 V[n-1][i] = V[i][i]; 00185 V[i][i] = 1.0; 00186 Real h = d[i+1]; 00187 if (h != 0.0) { 00188 for (int k = 0; k <= i; k++) { 00189 d[k] = V[k][i+1] / h; 00190 } 00191 for (int j = 0; j <= i; j++) { 00192 Real g = 0.0; 00193 for (int k = 0; k <= i; k++) { 00194 g += V[k][i+1] * V[k][j]; 00195 } 00196 for (int k = 0; k <= i; k++) { 00197 V[k][j] -= g * d[k]; 00198 } 00199 } 00200 } 00201 for (int k = 0; k <= i; k++) { 00202 V[k][i+1] = 0.0; 00203 } 00204 } 00205 for (int j = 0; j < n; j++) { 00206 d[j] = V[n-1][j]; 00207 V[n-1][j] = 0.0; 00208 } 00209 V[n-1][n-1] = 1.0; 00210 e[0] = 0.0; 00211 } 00213 // Symmetric tridiagonal QL algorithm. 00215 void tql2 () { 00217 // This is derived from the Algol procedures tql2, by 00218 // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for 00219 // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding 00220 // Fortran subroutine in EISPACK. 00222 for (int i = 1; i < n; i++) { 00223 e[i-1] = e[i]; 00224 } 00225 e[n-1] = 0.0; 00227 Real f = 0.0; 00228 Real tst1 = 0.0; 00229 Real eps = pow(2.0,-52.0); 00230 for (int l = 0; l < n; l++) { 00232 // Find small subdiagonal element 00234 tst1 = max(tst1,abs(d[l]) + abs(e[l])); 00235 int m = l; 00237 // Original while-loop from Java code 00238 while (m < n) { 00239 if (abs(e[m]) <= eps*tst1) { 00240 break; 00241 } 00242 m++; 00243 } 00246 // If m == l, d[l] is an eigenvalue, 00247 // otherwise, iterate. 00249 if (m > l) {
00250 int iter = 0;
00251 do {
00252 iter = iter + 1; // (Could check iteration count here.)
00254 // Compute implicit shift
00256 Real g = d[l];
00257 Real p = (d[l+1] – g) / (2.0 * e[l]);
00258 Real r = hypot(p,1.0);
00259 if (p < 0) { 00260 r = -r; 00261 } 00262 d[l] = e[l] / (p + r); 00263 d[l+1] = e[l] * (p + r); 00264 Real dl1 = d[l+1]; 00265 Real h = g - d[l]; 00266 for (int i = l+2; i < n; i++) { 00267 d[i] -= h; 00268 } 00269 f = f + h; 00271 // Implicit QL transformation. 00273 p = d[m]; 00274 Real c = 1.0; 00275 Real c2 = c; 00276 Real c3 = c; 00277 Real el1 = e[l+1]; 00278 Real s = 0.0; 00279 Real s2 = 0.0; 00280 for (int i = m-1; i >= l; i–) {
00281 c3 = c2;
00282 c2 = c;
00283 s2 = s;
00284 g = c * e[i];
00285 h = c * p;
00286 r = hypot(p,e[i]);
00287 e[i+1] = s * r;
00288 s = e[i] / r;
00289 c = p / r;
00290 p = c * d[i] – s * g;
00291 d[i+1] = h + s * (c * g + s * d[i]);
00293 // Accumulate transformation.
00295 for (int k = 0; k < n; k++) { 00296 h = V[k][i+1]; 00297 V[k][i+1] = s * V[k][i] + c * h; 00298 V[k][i] = c * V[k][i] - s * h; 00299 } 00300 } 00301 p = -s * s2 * c3 * el1 * e[l] / dl1; 00302 e[l] = s * p; 00303 d[l] = c * p; 00305 // Check for convergence. 00307 } while (abs(e[l]) > eps*tst1);
00308 }
00309 d[l] = d[l] + f;
00310 e[l] = 0.0;
00311 }
00313 // Sort eigenvalues and corresponding vectors.
00315 for (int i = 0; i < n-1; i++) { 00316 int k = i; 00317 Real p = d[i]; 00318 for (int j = i+1; j < n; j++) { 00319 if (d[j] < p) { 00320 k = j; 00321 p = d[j]; 00322 } 00323 } 00324 if (k != i) { 00325 d[k] = d[i]; 00326 d[i] = p; 00327 for (int j = 0; j < n; j++) { 00328 p = V[j][i]; 00329 V[j][i] = V[j][k]; 00330 V[j][k] = p; 00331 } 00332 } 00333 } 00334 } 00336 // Nonsymmetric reduction to Hessenberg form. 00338 void orthes () { 00340 // This is derived from the Algol procedures orthes and ortran, 00341 // by Martin and Wilkinson, Handbook for Auto. Comp., 00342 // Vol.ii-Linear Algebra, and the corresponding 00343 // Fortran subroutines in EISPACK. 00345 int low = 0; 00346 int high = n-1; 00348 for (int m = low+1; m <= high-1; m++) { 00350 // Scale column. 00352 Real scale = 0.0; 00353 for (int i = m; i <= high; i++) { 00354 scale = scale + abs(H[i][m-1]); 00355 } 00356 if (scale != 0.0) { 00358 // Compute Householder transformation. 00360 Real h = 0.0; 00361 for (int i = high; i >= m; i–) {
00362 ort[i] = H[i][m-1]/scale;
00363 h += ort[i] * ort[i];
00364 }
00365 Real g = sqrt(h);
00366 if (ort[m] > 0) {
00367 g = -g;
00368 }
00369 h = h – ort[m] * g;
00370 ort[m] = ort[m] – g;
00372 // Apply Householder similarity transformation
00373 // H = (I-u*u’/h)*H*(I-u*u’)/h)
00375 for (int j = m; j < n; j++) { 00376 Real f = 0.0; 00377 for (int i = high; i >= m; i–) {
00378 f += ort[i]*H[i][j];
00379 }
00380 f = f/h;
00381 for (int i = m; i <= high; i++) { 00382 H[i][j] -= f*ort[i]; 00383 } 00384 } 00386 for (int i = 0; i <= high; i++) { 00387 Real f = 0.0; 00388 for (int j = high; j >= m; j–) {
00389 f += ort[j]*H[i][j];
00390 }
00391 f = f/h;
00392 for (int j = m; j <= high; j++) { 00393 H[i][j] -= f*ort[j]; 00394 } 00395 } 00396 ort[m] = scale*ort[m]; 00397 H[m][m-1] = scale*g; 00398 } 00399 } 00401 // Accumulate transformations (Algol's ortran). 00403 for (int i = 0; i < n; i++) { 00404 for (int j = 0; j < n; j++) { 00405 V[i][j] = (i == j ? 1.0 : 0.0); 00406 } 00407 } 00409 for (int m = high-1; m >= low+1; m–) {
00410 if (H[m][m-1] != 0.0) {
00411 for (int i = m+1; i <= high; i++) { 00412 ort[i] = H[i][m-1]; 00413 } 00414 for (int j = m; j <= high; j++) { 00415 Real g = 0.0; 00416 for (int i = m; i <= high; i++) { 00417 g += ort[i] * V[i][j]; 00418 } 00419 // Double division avoids possible underflow 00420 g = (g / ort[m]) / H[m][m-1]; 00421 for (int i = m; i <= high; i++) { 00422 V[i][j] += g * ort[i]; 00423 } 00424 } 00425 } 00426 } 00427 } 00430 // Complex scalar division. 00432 Real cdivr, cdivi; 00433 void cdiv(Real xr, Real xi, Real yr, Real yi) { 00434 Real r,d; 00435 if (abs(yr) > abs(yi)) {
00436 r = yi/yr;
00437 d = yr + r*yi;
00438 cdivr = (xr + r*xi)/d;
00439 cdivi = (xi – r*xr)/d;
00440 } else {
00441 r = yr/yi;
00442 d = yi + r*yr;
00443 cdivr = (r*xr + xi)/d;
00444 cdivi = (r*xi – xr)/d;
00445 }
00446 }
00449 // Nonsymmetric reduction from Hessenberg to real Schur form.
00451 void hqr2 () {
00453 // This is derived from the Algol procedure hqr2,
00454 // by Martin and Wilkinson, Handbook for Auto. Comp.,
00455 // Vol.ii-Linear Algebra, and the corresponding
00456 // Fortran subroutine in EISPACK.
00458 // Initialize
00460 int nn = this->n;
00461 int n = nn-1;
00462 int low = 0;
00463 int high = nn-1;
00464 Real eps = pow(2.0,-52.0);
00465 Real exshift = 0.0;
00466 Real p=0,q=0,r=0,s=0,z=0,t,w,x,y;
00468 // Store roots isolated by balanc and compute matrix norm
00470 Real norm = 0.0;
00471 for (int i = 0; i < nn; i++) { 00472 if ((i < low) || (i > high)) {
00473 d[i] = H[i][i];
00474 e[i] = 0.0;
00475 }
00476 for (int j = max(i-1,0); j < nn; j++) { 00477 norm = norm + abs(H[i][j]); 00478 } 00479 } 00481 // Outer loop over eigenvalue index 00483 int iter = 0; 00484 while (n >= low) {
00486 // Look for single small sub-diagonal element
00488 int l = n;
00489 while (l > low) {
00490 s = abs(H[l-1][l-1]) + abs(H[l][l]);
00491 if (s == 0.0) {
00492 s = norm;
00493 }
00494 if (abs(H[l][l-1]) < eps * s) { 00495 break; 00496 } 00497 l--; 00498 } 00500 // Check for convergence 00501 // One root found 00503 if (l == n) { 00504 H[n][n] = H[n][n] + exshift; 00505 d[n] = H[n][n]; 00506 e[n] = 0.0; 00507 n--; 00508 iter = 0; 00510 // Two roots found 00512 } else if (l == n-1) { 00513 w = H[n][n-1] * H[n-1][n]; 00514 p = (H[n-1][n-1] - H[n][n]) / 2.0; 00515 q = p * p + w; 00516 z = sqrt(abs(q)); 00517 H[n][n] = H[n][n] + exshift; 00518 H[n-1][n-1] = H[n-1][n-1] + exshift; 00519 x = H[n][n]; 00521 // Real pair 00523 if (q >= 0) {
00524 if (p >= 0) {
00525 z = p + z;
00526 } else {
00527 z = p – z;
00528 }
00529 d[n-1] = x + z;
00530 d[n] = d[n-1];
00531 if (z != 0.0) {
00532 d[n] = x – w / z;
00533 }
00534 e[n-1] = 0.0;
00535 e[n] = 0.0;
00536 x = H[n][n-1];
00537 s = abs(x) + abs(z);
00538 p = x / s;
00539 q = z / s;
00540 r = sqrt(p * p+q * q);
00541 p = p / r;
00542 q = q / r;
00544 // Row modification
00546 for (int j = n-1; j < nn; j++) { 00547 z = H[n-1][j]; 00548 H[n-1][j] = q * z + p * H[n][j]; 00549 H[n][j] = q * H[n][j] - p * z; 00550 } 00552 // Column modification 00554 for (int i = 0; i <= n; i++) { 00555 z = H[i][n-1]; 00556 H[i][n-1] = q * z + p * H[i][n]; 00557 H[i][n] = q * H[i][n] - p * z; 00558 } 00560 // Accumulate transformations 00562 for (int i = low; i <= high; i++) { 00563 z = V[i][n-1]; 00564 V[i][n-1] = q * z + p * V[i][n]; 00565 V[i][n] = q * V[i][n] - p * z; 00566 } 00568 // Complex pair 00570 } else { 00571 d[n-1] = x + p; 00572 d[n] = x + p; 00573 e[n-1] = z; 00574 e[n] = -z; 00575 } 00576 n = n - 2; 00577 iter = 0; 00579 // No convergence yet 00581 } else { 00583 // Form shift 00585 x = H[n][n]; 00586 y = 0.0; 00587 w = 0.0; 00588 if (l < n) { 00589 y = H[n-1][n-1]; 00590 w = H[n][n-1] * H[n-1][n]; 00591 } 00593 // Wilkinson's original ad hoc shift 00595 if (iter == 10) { 00596 exshift += x; 00597 for (int i = low; i <= n; i++) { 00598 H[i][i] -= x; 00599 } 00600 s = abs(H[n][n-1]) + abs(H[n-1][n-2]); 00601 x = y = 0.75 * s; 00602 w = -0.4375 * s * s; 00603 } 00605 // MATLAB's new ad hoc shift 00607 if (iter == 30) { 00608 s = (y - x) / 2.0; 00609 s = s * s + w; 00610 if (s > 0) {
00611 s = sqrt(s);
00612 if (y < x) { 00613 s = -s; 00614 } 00615 s = x - w / ((y - x) / 2.0 + s); 00616 for (int i = low; i <= n; i++) { 00617 H[i][i] -= s; 00618 } 00619 exshift += s; 00620 x = y = w = 0.964; 00621 } 00622 } 00624 iter = iter + 1; // (Could check iteration count here.) 00626 // Look for two consecutive small sub-diagonal elements 00628 int m = n-2; 00629 while (m >= l) {
00630 z = H[m][m];
00631 r = x – z;
00632 s = y – z;
00633 p = (r * s – w) / H[m+1][m] + H[m][m+1];
00634 q = H[m+1][m+1] – z – r – s;
00635 r = H[m+2][m+1];
00636 s = abs(p) + abs(q) + abs(r);
00637 p = p / s;
00638 q = q / s;
00639 r = r / s;
00640 if (m == l) {
00641 break;
00642 }
00643 if (abs(H[m][m-1]) * (abs(q) + abs(r)) < 00644 eps * (abs(p) * (abs(H[m-1][m-1]) + abs(z) + 00645 abs(H[m+1][m+1])))) { 00646 break; 00647 } 00648 m--; 00649 } 00651 for (int i = m+2; i <= n; i++) { 00652 H[i][i-2] = 0.0; 00653 if (i > m+2) {
00654 H[i][i-3] = 0.0;
00655 }
00656 }
00658 // Double QR step involving rows l:n and columns m:n
00660 for (int k = m; k <= n-1; k++) { 00661 int notlast = (k != n-1); 00662 if (k != m) { 00663 p = H[k][k-1]; 00664 q = H[k+1][k-1]; 00665 r = (notlast ? H[k+2][k-1] : 0.0); 00666 x = abs(p) + abs(q) + abs(r); 00667 if (x != 0.0) { 00668 p = p / x; 00669 q = q / x; 00670 r = r / x; 00671 } 00672 } 00673 if (x == 0.0) { 00674 break; 00675 } 00676 s = sqrt(p * p + q * q + r * r); 00677 i 程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com