CS计算机代考程序代写 cache (* Content-type: application/mathematica *)

(* Content-type: application/mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy=’Mathematica 7.0′ *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 33775, 927]
NotebookOptionsPosition[ 28922, 834]
NotebookOutlinePosition[ 29422, 852]
CellTagsIndexPosition[ 29379, 849]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[“This lab notebook is the work of REPLACE WITH YOUR NAME.”, “Subsection”,
CellChangeTimes->{{3.662761489022896*^9, 3.6627614987592278`*^9}, {
3.690053947986513*^9,
3.690053951435322*^9}},ExpressionUUID->”800d4a31-60ab-48f9-b3a2-\
13ee24056a98″],

Cell[“Math 316 Section REPLACE WITH YOUR SECTION NUMBER.”, “Subsection”,
CellChangeTimes->{{3.6627615116709623`*^9, 3.662761518510602*^9}, {
3.6900539691718616`*^9,
3.6900539736989727`*^9}},ExpressionUUID->”f0bcaa54-ea11-4ae4-b366-\
bc13ed014c81″],

Cell[CellGroupData[{

Cell[“Math 316 Fall 2021 – Lab 5”, “Title”,
CellChangeTimes->{{3.500723499117723*^9, 3.500723503773542*^9}, {
3.721339155461787*^9, 3.721339158092125*^9}, {3.752429005636305*^9,
3.7524290056632357`*^9}, {3.8273370261742134`*^9, 3.8273370275254784`*^9}, {
3.8273403140796566`*^9, 3.8273403147430143`*^9}, {3.8475356723280516`*^9,
3.847535674702314*^9}},ExpressionUUID->”84bcea7c-40c1-41ca-a24d-\
72fd5154f6ac”],

Cell[“Introduction”, “Subtitle”,
CellChangeTimes->{{3.500723509517547*^9,
3.500723510885666*^9}},ExpressionUUID->”72f6b4fc-46ad-42be-b6f8-\
61b2bbf8baa0″],

Cell[TextData[{
“The three objectives of this lab are all related to the analysis of \
nonlinear systems. They are:\n”,
StyleBox[“1.”,
FontWeight->”Bold”],
” To determine the “,
StyleBox[“linear behavior”,
FontSlant->”Italic”],
” around the “,
StyleBox[“equilibrium solutions”,
FontSlant->”Italic”],
” of the system,\n”,
StyleBox[“2.”,
FontWeight->”Bold”],
” To find “,
StyleBox[“nullclines”,
FontSlant->”Italic”],
” and see how they determine the nature of solution trajectories in the \
phase plane, and\n”,
StyleBox[“3.”,
FontWeight->”Bold”],
” To find and graph trajectories of the nonlinear system in the phase plane “,
StyleBox[“numerically”,
FontSlant->”Italic”],
“, and to think about what the solutions to the system look like as \
functions of time.”
}], “Text”,
CellFrame->2,
CellChangeTimes->{{3.49467155195753*^9, 3.49467166504372*^9}, {
3.49467344501027*^9, 3.49467346905777*^9}, {3.49675269872956*^9,
3.496752747919068*^9}, {3.499446411118032*^9, 3.499446511283151*^9}, {
3.50072402615989*^9, 3.500724153979699*^9}, {3.500726158029883*^9,
3.500726185181656*^9}, 3.8273390266042767`*^9},
Background->RGBColor[
0.9, 0.9, 1],ExpressionUUID->”0eed481c-8a3b-427c-916d-b6bfb3910c0c”],

Cell[CellGroupData[{

Cell[“Background”, “Subsubtitle”,
CellChangeTimes->{{3.500724186219261*^9,
3.500724187283005*^9}},ExpressionUUID->”a002028b-39aa-4c4a-b093-\
00bbeb075f18″],

Cell[TextData[{
“In this lab we consider a nonlinear model for the price, “,
Cell[BoxData[
FormBox[
RowBox[{“p”, “(“, “t”, “)”}], TraditionalForm]],ExpressionUUID->
“9001466a-b87f-4673-ba5c-eb155e15f95e”],
” of a product that is produced in quantity “,
Cell[BoxData[
FormBox[
RowBox[{“q”, “(“, “t”, “)”}], TraditionalForm]],ExpressionUUID->
“c65d06af-afbd-43d3-81aa-b2c4f09023ba”],
” (which is measured in some unit, say 100s or 1000s of objects). If we \
consider these to be interacting functions of time, we can come up with a set \
of equations that model them, \n\t”,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{
RowBox[{“p”, ” “, “‘”}],
RowBox[{“(“, “t”, “)”}]}], ” “, “=”, ” “,
RowBox[{
RowBox[{
RowBox[{“p”, “(“, “t”, “)”}], ” “,
RowBox[{“(“, ” “,
RowBox[{
RowBox[{“a”, ” “, “/”, ” “,
RowBox[{“(“,
RowBox[{
RowBox[{“q”, “(“, “t”, “)”}], ” “, “+”, ” “, “\[Epsilon]”}], ” “,
“)”}]}], ” “, “-“, ” “,
RowBox[{“b”, ” “,
RowBox[{“p”, “(“, “t”, “)”}]}]}], ” “, “)”}]}], ” “, “=”, ” “,
RowBox[{“F”, “(“,
RowBox[{“p”, “,”, ” “, “q”}], “)”}]}]}], “,”, “\[IndentingNewLine]”,
RowBox[{
RowBox[{
RowBox[{“q”, ” “, “‘”}],
RowBox[{“(“, “t”, “)”}]}], ” “, “=”, ” “,
RowBox[{
RowBox[{
RowBox[{“q”, “(“, “t”, “)”}], ” “,
RowBox[{“(“, ” “,
RowBox[{
RowBox[{“c”, ” “,
RowBox[{“p”, “(“, “t”, “)”}]}], ” “, “-“, ” “,
RowBox[{“d”, ” “,
RowBox[{“q”, “(“, “t”, “)”}]}]}], ” “, “)”}]}], ” “, “=”, ” “,
RowBox[{
RowBox[{“G”, “(“,
RowBox[{“p”, “,”, ” “, “q”}], “)”}], “.”}]}]}]}], TraditionalForm]],
ExpressionUUID->”c4cb7e2c-e10a-4cf4-867d-3e0d984b0f48″],
“\nHere, “,
StyleBox[“a”,
FontSlant->”Italic”],
“, “,
StyleBox[“b”,
FontSlant->”Italic”],
“, “,
StyleBox[“c”,
FontSlant->”Italic”],
“, “,
StyleBox[“d”,
FontSlant->”Italic”],
“, and “,
StyleBox[“\[Epsilon]”, “InlineFormula”],
” are non-negative constants (parameters of the model). These equations \
suggest that: price increases when the quantity produced is small enough, and \
decreases when the price is too high; and that the quantity produced \
increases when the price is large enough, but decreases when the quantity \
being produced is too large. If “,
Cell[BoxData[
FormBox[
RowBox[{“\[Epsilon]”, ” “, “=”, ” “, “0”}], TraditionalForm]],
ExpressionUUID->”de221ba6-d230-442c-b96c-63d96ad3ce15″],
“, then as “,
Cell[BoxData[
FormBox[
RowBox[{“q”, “\[RightArrow]”, “0”}], TraditionalForm]],ExpressionUUID->
“ced8eeb0-de1b-43ec-afa6-8d3e47011931″],
” we note that there is a singularity and “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{“p”, ” “, “‘”}], “\[RightArrow]”, “\[Infinity]”}],
TraditionalForm]],ExpressionUUID->”0920436a-57b3-4a5f-8530-b9e47b153ea4″],
“.\n\nBecause these equations both have a balance of competing effects, we \
expect that there might be a non-zero stable equilibrium solution giving the \
equilibrium price and quantity.\n\nFor the purposes of this lab, we will take \
“,
Cell[BoxData[
FormBox[
RowBox[{“\[Epsilon]”, ” “, “=”, ” “, “1”}], TraditionalForm]],
FontWeight->”Bold”,ExpressionUUID->”9abc035d-b1d0-4128-b0fb-be3c5fd4352d”],
StyleBox[“, “,
FontWeight->”Bold”],
Cell[BoxData[
FormBox[
RowBox[{“a”, ” “, “=”, ” “, “2”}], TraditionalForm]],
FontWeight->”Bold”,ExpressionUUID->”558dc558-f3de-45ac-b07b-f6eb5458bd83″],
StyleBox[“, “,
FontWeight->”Bold”],
Cell[BoxData[
FormBox[
RowBox[{“b”, ” “, “=”, ” “, “1”}], TraditionalForm]],
FontWeight->”Bold”,ExpressionUUID->”fd00e984-b22a-453a-8789-38ec00bfb1d3″],
StyleBox[“, “,
FontWeight->”Bold”],
Cell[BoxData[
FormBox[
RowBox[{“c”, ” “, “=”, ” “, “10”}], TraditionalForm]],
FontWeight->”Bold”,ExpressionUUID->”2f2f64ba-f32d-4401-8e51-4a81392ca87d”],
StyleBox[” “,
FontWeight->”Bold”],
“and”,
StyleBox[” “,
FontWeight->”Bold”],
Cell[BoxData[
FormBox[
RowBox[{“d”, ” “, “=”, ” “, “1”}], TraditionalForm]],
FontWeight->”Bold”,ExpressionUUID->”7107ee75-9521-4253-91f5-031351d2fbb1″],
StyleBox[“. “,
FontWeight->”Bold”],
StyleBox[“Execute the following cell”,
FontVariations->{“Underline”->True}],
” to define functions representing the right-hand sides of the differential \
equations for these parameter values:”
}], “Text”,
CellChangeTimes->{{3.500724188835379*^9, 3.500724353413226*^9}, {
3.500724400405833*^9, 3.500724421775025*^9}, {3.669224058745015*^9,
3.6692241031741457`*^9}, {3.752430366603505*^9, 3.752430404177074*^9}, {
3.752430543744375*^9, 3.752430676165492*^9}, {3.7524308155823*^9,
3.752430816291635*^9}},ExpressionUUID->”cd515f83-4535-4549-9805-\
151c6d2fbe92″],

Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{“F”, “[“,
RowBox[{“p_”, “,”, “q_”}], “]”}], “=”,
RowBox[{“p”, “*”,
RowBox[{“(“,
RowBox[{
RowBox[{“2”, “/”,
RowBox[{“(“,
RowBox[{“q”, “+”, “1”}], “)”}]}], “-“, “p”}], “)”}]}]}],
“;”}], “\[IndentingNewLine]”,
RowBox[{
RowBox[{
RowBox[{“G”, “[“,
RowBox[{“p_”, “,”, “q_”}], “]”}], “=”,
RowBox[{“q”, “*”,
RowBox[{“(“,
RowBox[{
RowBox[{“10”, “*”, “p”}], “-“, “q”}], “)”}]}]}], “;”}]}], “Input”,
CellChangeTimes->{{3.6692130456553373`*^9,
3.669213146042791*^9}},ExpressionUUID->”3bc2689b-b853-435f-a2fb-\
4ba66b835075″],

Cell[CellGroupData[{

Cell[“Linear Analysis”, “Section”,
CellChangeTimes->{{3.500724380632527*^9,
3.500724382272611*^9}},ExpressionUUID->”e93f162a-a14e-4d25-905c-\
195ce4bff4ce”],

Cell[CellGroupData[{

Cell[“Exercise 1a: Equilibrium solutions”, “Subsection”,
CellChangeTimes->{{3.50072445683934*^9, 3.500724460598833*^9}, {
3.50072455096565*^9, 3.500724551549717*^9}, {3.500724706635602*^9,
3.500724708931261*^9}},ExpressionUUID->”22bca350-4216-4c6d-9291-\
65c455729733″],

Cell[TextData[{
“The first step in our linear analysis is to find the equilibrium solutions \
to the system. Use “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
“‘s “,
StyleBox[“Solve”, “Input”],
” command (remember to use double equals “,
StyleBox[“==”, “Input”],
” in your equations, and use the Help menu to find out the correct syntax to \
use) to find the equilibrium solutions. “,
StyleBox[“Explain in a text cell:”,
FontVariations->{“Underline”->True}],
” which of these are sensible in the economics context of the model? Which \
do you expect to be stable? Why?”
}], “Text”,
CellChangeTimes->{{3.50072445054369*^9, 3.500724503054469*^9}, {
3.500724778114128*^9, 3.5007247877699*^9}, {3.500724856425108*^9,
3.500724857320971*^9}, {3.690054141833296*^9, 3.690054154096533*^9}, {
3.7524310010901127`*^9, 3.75243100916164*^9}, {3.752431071665254*^9,
3.7524310814792433`*^9}, {3.752431301438829*^9, 3.7524313086282473`*^9}, {
3.8273396665870256`*^9,
3.8273396810553265`*^9}},ExpressionUUID->”daf10284-e7a1-444d-bcce-\
9887fc9e19d5″]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 1b: Linear systems”, “Subsection”,
CellChangeTimes->{{3.500724546269768*^9, 3.500724548357548*^9}, {
3.500724712611255*^9, 3.500724714971021*^9}, {3.500725010623285*^9,
3.5007250112311*^9}},ExpressionUUID->”c98f0aa7-c11a-4c17-a3b4-afbaed3e18ad”],

Cell[TextData[{
“Then, to determine the linear behavior near these equilibrium solutions, we \
linearize the system near each by taking “,
Cell[BoxData[
FormBox[
RowBox[{
OverscriptBox[“p”, “-“], “=”, ” “,
RowBox[{
RowBox[{“(“, GridBox[{
{“p”},
{“q”}
}], “)”}], ” “, “=”, ” “,
RowBox[{
RowBox[{
RowBox[{“(“, GridBox[{
{
SubscriptBox[“p”, “0”]},
{
SubscriptBox[“q”, “0”]}
}], “)”}], ” “, “+”, ” “,
RowBox[{“(“, GridBox[{
{“u”},
{“v”}
}], “)”}]}], ” “, “=”, ” “,
RowBox[{
SubscriptBox[
OverscriptBox[“p”, “-“], “0”], “+”,
OverscriptBox[“u”, “-“]}]}]}]}], TraditionalForm]],ExpressionUUID->
“4fc3be2a-4f70-463b-b3e4-578f1b8822ef”],
“, so that “,
Cell[BoxData[
FormBox[
RowBox[{
OverscriptBox[“u”, “-“], “=”, ” “,
RowBox[{“(“, GridBox[{
{“u”},
{“v”}
}], “)”}]}], TraditionalForm]],ExpressionUUID->
“dc68c03f-aa4c-4621-bafe-2fbf7b40c119″],
” gives the displacement of the variables from the equilibrium “,
Cell[BoxData[
FormBox[
SubscriptBox[
OverscriptBox[“p”, “-“], “0”], TraditionalForm]],ExpressionUUID->
“2875b12b-3fe8-40bd-8990-527ddb68d9fc”],
“. Find the “,
StyleBox[“Jacobian”,
FontVariations->{“Underline”->True}],
” for the system (but don\[CloseCurlyQuote]t call it “,
StyleBox[“Jacobian”, “Input”],
“, because that means something else in “,
StyleBox[“Mathematica; “,
FontSlant->”Italic”],
“you can use “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
“\[CloseCurlyQuote]s “,
StyleBox[“D”, “Input”,
FontWeight->”Bold”],
” command to find partial derivatives). Then use your result to find the \
linearized system at the equilibrium point expected to be stable from “,
StyleBox[“(1a)”,
FontWeight->”Bold”],
“.”
}], “Text”,
CellChangeTimes->{{3.500724559693175*^9, 3.500724730474874*^9}, {
3.500724844257887*^9, 3.500724869200982*^9}, {3.669211362184218*^9,
3.6692113645201406`*^9}, {3.669221098095212*^9, 3.669221113957551*^9}, {
3.752431522987414*^9, 3.752431540833603*^9}, {3.75243168232133*^9,
3.7524317006306562`*^9}, {3.7524318379591503`*^9, 3.75243183928594*^9}, {
3.827340078674834*^9,
3.8273400867068105`*^9}},ExpressionUUID->”d97234a0-2235-4c63-8502-\
869c3e548fb0″]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 1c: Linear stability”, “Subsection”,
CellChangeTimes->{{3.500724546269768*^9, 3.500724548357548*^9}, {
3.500724712611255*^9, 3.500724714971021*^9}, {3.500725010623285*^9,
3.500725021606389*^9}, {3.670369922275558*^9,
3.670369922339952*^9}},ExpressionUUID->”d7d98e63-203a-4566-9fc0-\
2e79c1ae99b6″],

Cell[TextData[{
“Now that we have a linear system, we can analyze its stability. Find the \
eigenvalues and eigenvectors for the system using “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
” (the commands “,
StyleBox[“Eigenvalues”, “Input”],
“, “,
StyleBox[“Eigenvectors”, “Input”],
“, and/or “,
StyleBox[“Eigensystem”, “Input”],
” may be useful here). Is the equilibrium solution stable? What type of \
point in the phase plane is it? What do the eigenvectors tell you about \
trajectories near the equilibrium solution? What if any information about \
the linearized system carries over to the nonlinear system it locally \
approximates?”
}], “Text”,
CellChangeTimes->{{3.500725025198568*^9, 3.500725101373327*^9}, {
3.500725174260714*^9, 3.500725187412157*^9}, {3.752432000069189*^9,
3.752432020315344*^9}},ExpressionUUID->”d42b72f4-78f2-4a58-a780-\
3a2cfe9560b7″]
}, Open ]]
}, Open ]]
}, Open ]],

Cell[CellGroupData[{

Cell[“Observation after completing Exercise 1c:”, “Subsubtitle”,
CellChangeTimes->{{3.500725302146518*^9, 3.50072530424234*^9}, {
3.752432148577313*^9,
3.752432153617219*^9}},ExpressionUUID->”72ea75d0-56ee-4685-b690-\
b9280fab0011″],

Cell[“\<\ To get a clear sense of how solutions of the nonlinear system behave, we \ should test the stability of all of the equilibrium solutions, and should \ also find the eigenvectors to be able to sketch a phase portrait at each. \ This would give a sense of the likely long-term behavior of solutions in the \ system. For brevity in this lab, however, we stop with only the eigenvalues \ we found above for one equilibrium solution; because we have an intuitive \ sense based on economic reasoning of what we expect to find, this gives some \ window on our guess for the behavior of the system.\ \>“, “Text”,
CellChangeTimes->{{3.500725308138985*^9, 3.500725314563821*^9}, {
3.7524321222114687`*^9,
3.752432131297875*^9}},ExpressionUUID->”76984700-2913-4812-a11b-\
c2b1ac52ffb6″],

Cell[CellGroupData[{

Cell[“Nullclines”, “Section”,
CellChangeTimes->{{3.50072533260202*^9,
3.500725334113762*^9}},ExpressionUUID->”bf0a4ff8-c21c-4b8b-8b3f-\
4f096f23a065″],

Cell[TextData[{
“Note that to find equilibrium solutions, we look for those points where \
both “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{“p”, “‘”}],
RowBox[{“(“, “t”, “)”}]}], ” “, “=”, ” “, “0”}], TraditionalForm]],
ExpressionUUID->”162a60d2-3aa8-4fa8-9c0c-34af3f4c46fa”],
” and “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{“q”, “‘”}],
RowBox[{“(“, “t”, “)”}]}], ” “, “=”, ” “, “0”}], TraditionalForm]],
ExpressionUUID->”ee8e514f-1878-43dd-b950-c612786969c0″],
“. If we consider only one of these conditions at a time, we find “,
StyleBox[“nullclines”,
FontWeight->”Bold”,
FontSlant->”Italic”],
” of the system. For this system, we will find “,
StyleBox[“p-nullclines”,
FontSlant->”Italic”],
” (where “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{“p”, “‘”}],
RowBox[{“(“, “t”, “)”}]}], ” “, “=”, ” “, “0”}], TraditionalForm]],
ExpressionUUID->”a6f45675-6405-47e1-906c-f72775f3c90b”],
“, also called “,
StyleBox[“vertical nullclines”,
FontSlant->”Italic”],
“), and “,
StyleBox[“q-nullclines”,
FontSlant->”Italic”],
” (where “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{“q”, “‘”}],
RowBox[{“(“, “t”, “)”}]}], ” “, “=”, ” “, “0”}], TraditionalForm]],
ExpressionUUID->”92f00318-49d7-4253-ba82-30bbf54d269b”],
“, also called “,
StyleBox[“horizontal nullclines”,
FontSlant->”Italic”],
“).”
}], “Text”,
CellChangeTimes->{
3.5007253392861*^9, {3.669211493219756*^9,
3.66921153147431*^9}},ExpressionUUID->”3dc56024-e145-4f63-acd8-\
ed0742f362cb”],

Cell[CellGroupData[{

Cell[“Exercise 2a: Nullclines”, “Subsection”,
CellChangeTimes->{{3.500725361137625*^9, 3.500725367721424*^9},
3.8273376374595757`*^9},ExpressionUUID->”9a9452f7-7c79-4637-99d5-\
6148df8db3b2″],

Cell[TextData[{
“Find and plot the nullclines of the system in the (p,q) phase plane. Use \
different colors to distinguish the two different types of nullclines (recall \
“,
StyleBox[“PlotStyle->{color1, color2,…}”, “Input”],
“). You can add a vertical line to a plot by including “,
StyleBox[“Epilog->{color,Line[{{a,0},{a,b}}]}”, “Input”],
” in the “,
StyleBox[“Plot”, “Input”],
” command for suitable “,
StyleBox[“a”, “Input”],
“,”,
StyleBox[“b”, “Input”],
” and choice of “,
StyleBox[“color”, “Input”],
“, capitalized as with all built-in symbols in “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
“.”
}], “Text”,
CellChangeTimes->{{3.500725369769562*^9, 3.500725377057223*^9}, {
3.669211577752718*^9, 3.669211656742015*^9}, {3.669215493570119*^9,
3.669215604653038*^9}, {3.669215791399665*^9, 3.669215795974271*^9}, {
3.752432311713139*^9,
3.752432319855502*^9}},ExpressionUUID->”91e80fc5-16d7-44b2-a57d-\
0b74f7662343″]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 2b: …and Equilibrium Solutions”, “Subsection”,
CellChangeTimes->{{3.500725408712814*^9,
3.500725448072619*^9}},ExpressionUUID->”a3240a71-9108-41ad-abe2-\
0830dec33854″],

Cell[TextData[{
“How are the equilibrium solutions you found in “,
StyleBox[“(1a)”,
FontWeight->”Bold”],
” related to the graph that you found in “,
StyleBox[“(2a)”,
FontWeight->”Bold”],
“?”
}], “Text”,
CellChangeTimes->{{3.448732366531382*^9, 3.448732380805912*^9}, {
3.448732617175555*^9, 3.448732626679429*^9}, {3.669211695748498*^9,
3.669211707252123*^9}},ExpressionUUID->”12597281-6c1c-40c8-b245-\
c3563862443d”]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 2c: …and Solution Trajectories”, “Subsection”,
CellChangeTimes->{{3.500725540935032*^9,
3.500725552166768*^9}},ExpressionUUID->”b1d51755-18cd-4256-9afd-\
b56f893b38ce”],

Cell[TextData[{
“What can you say about solution trajectories in the phase plane as they \
cross a “,
Cell[BoxData[
FormBox[“p”, TraditionalForm]],ExpressionUUID->
“b01cd7bc-6293-4832-b97d-e7718307b678”],
“-nullcline? A “,
Cell[BoxData[
FormBox[“q”, TraditionalForm]],ExpressionUUID->
“2baa8dcc-ecd0-40d4-bc35-0199e6730983”],
“-nullcline? (If this isn’t obvious, complete Exercise 3 in the numerical \
solution section and then come back to answer the question!)”
}], “Text”,
CellChangeTimes->{{3.448733615030609*^9, 3.448733664493339*^9}, {
3.752432451999378*^9,
3.7524324573095617`*^9}},ExpressionUUID->”89ef7156-a952-4bfc-9f13-\
fdb1fa41b8d2″]
}, Open ]]
}, Open ]],

Cell[CellGroupData[{

Cell[“Numerical Solutions”, “Section”,
CellChangeTimes->{{3.500725590814344*^9,
3.500725595318118*^9}},ExpressionUUID->”ff6b8123-2cff-41c3-bb3e-\
201efa5bf916″],

Cell[TextData[{
“Finally, let’s find numerical solutions (really, “,
StyleBox[“approximations”,
FontSlant->”Italic”],
” to solutions) to the full system. In the following we do this for a \
couple of different initial conditions, and then graph the solutions we find \
both in the phase plane and as functions of time.”
}], “Text”,
CellChangeTimes->{{3.448733745057454*^9, 3.448733800410529*^9}, {
3.448733845041864*^9,
3.4487338643622723`*^9}},ExpressionUUID->”482d8d08-f9c0-4509-b987-\
c8b759dfa861″],

Cell[CellGroupData[{

Cell[“Exercise 3a: A numerical solution”, “Subsection”,
CellChangeTimes->{{3.500725643405542*^9, 3.500725682804946*^9}, {
3.8273374877283497`*^9,
3.8273374883097*^9}},ExpressionUUID->”9223b786-bca2-4b1a-84b8-7910d89240ae”],

Cell[TextData[{
“We can find and plot a numerical solution by using “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
“‘s “,
StyleBox[“NDSolve”, “Input”],
” and “,
StyleBox[“ParametricPlot”, “Input”],
” commands. Recall that the syntax to plot with “,
StyleBox[“NDSolve”, “Input”],
” is\n\t”,
StyleBox[“sol = NDSolve[{equations, initial conds}, {p,q},{t, t0, tmax}]\n\t\
ParametricPlot[{p[t],q[t]}/.sol,{t,t0,tmax}]”, “Input”],
“\nUse “,
StyleBox[“NDSolve”, “Input”],
” and “,
StyleBox[“ParametricPlot”, “Input”],
” to find the solution “,
Cell[BoxData[
FormBox[
RowBox[{“(“,
RowBox[{“p”, “,”, ” “, “q”}], “)”}], TraditionalForm]],ExpressionUUID->
“3d7e4c7b-b325-470f-99e8-a7b86ddfb258″],
” to the system if “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{“p”, “(“, “0”, “)”}], ” “, “=”, ” “, “0.1”}], TraditionalForm]],
ExpressionUUID->”af8299b5-78d7-444f-9d33-dca8514d312a”],
“, “,
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{“q”, “(“, “0”, “)”}], ” “, “=”, ” “, “5”}], TraditionalForm]],
ExpressionUUID->”b5a90e1a-66b0-4776-8233-63d7adb87872″],
” and plot this in the phase plane. Does it behave as you expect?”
}], “Text”,
CellChangeTimes->{{3.500725671741027*^9, 3.500725754643652*^9}, {
3.50072579893992*^9, 3.500725954315883*^9}, {3.500726017671943*^9,
3.500726039191641*^9}, {3.669211835887905*^9, 3.669211877110436*^9}, {
3.6692119235568438`*^9, 3.669211948614801*^9}, 3.66921660509164*^9, {
3.66921698082251*^9, 3.669216981029243*^9}, {3.690054784792107*^9,
3.690054803831647*^9}, 3.690055572614933*^9, {3.8273374566197424`*^9,
3.8273374867499456`*^9}, {3.827338019257086*^9, 3.8273381976542015`*^9}, {
3.8273382687182746`*^9, 3.8273383702770348`*^9}, {3.827338448652872*^9,
3.8273384504377604`*^9}, {3.827338565693826*^9,
3.827338589325524*^9}},ExpressionUUID->”784c74e9-a160-45f0-a7b2-\
548ad6e567bb”]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 3b: More solutions”, “Subsection”,
CellChangeTimes->{{3.500726119510276*^9, 3.500726129110051*^9}, {
3.669217124104879*^9, 3.669217130007801*^9}, {3.827337489094535*^9,
3.8273374899394445`*^9}},ExpressionUUID->”e47c5f39-c989-4c2f-a6e0-\
b7f1bb129f37″],

Cell[TextData[{
“Pick three other points to use as initial conditions, using your plot of \
nullclines from “,
StyleBox[“(2a)”,
FontWeight->”Bold”],
” as a guide to make some informed choices. Repeat “,
StyleBox[“(3a)”,
FontWeight->”Bold”],
” for these initial conditions.”
}], “Text”,
CellChangeTimes->{{3.448735083741056*^9, 3.448735144934692*^9}, {
3.669212000105927*^9, 3.669212016385358*^9}, {3.6692121025751333`*^9,
3.6692121462928953`*^9}, {3.669217141759562*^9,
3.6692172186767178`*^9}},ExpressionUUID->”13c5742a-aa80-4053-a8cf-\
c148f194d56b”]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 3c: Solutions and nullclines”, “Subsection”,
CellChangeTimes->{{3.500726119510276*^9, 3.500726129110051*^9}, {
3.669217251196391*^9,
3.669217251283568*^9}},ExpressionUUID->”4ee755a4-5dc9-435d-8fe8-\
8b1c2a0c0c70″],

Cell[TextData[{
“Use “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
“\[CloseCurlyQuote]s “,
StyleBox[“Show”, “Input”],
” command to display the trajectories you graphed in “,
StyleBox[“(3ab)”,
FontWeight->”Bold”],
” together with the nullclines that you graphed in “,
StyleBox[“(2a)”,
FontWeight->”Bold”],
” in the same plot. What is true about how the trajectories cross \
nullclines?”
}], “Text”,
CellChangeTimes->{{3.448735083741056*^9, 3.448735144934692*^9}, {
3.669212000105927*^9, 3.669212016385358*^9}, {3.6692121025751333`*^9,
3.6692121462928953`*^9}, {3.6692172664917107`*^9,
3.6692172737629128`*^9}, {3.669218347999012*^9, 3.6692183580610847`*^9},
3.8273375737813244`*^9},ExpressionUUID->”3c78688c-7e28-42c0-9ca2-\
a9a264704bb4″]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 3d: Solutions and time”, “Subsection”,
CellChangeTimes->{{3.500726220572955*^9, 3.50072622772503*^9}, {
3.66921730758628*^9,
3.669217307649603*^9}},ExpressionUUID->”f4885494-1847-48a9-9f53-\
bc13d4be2284″],

Cell[TextData[{
“Plot your solutions for “,
Cell[BoxData[
FormBox[“p”, TraditionalForm]],ExpressionUUID->
“1729cc41-a353-4236-8ae5-cf9564df000a”],
” and “,
Cell[BoxData[
FormBox[“q”, TraditionalForm]],ExpressionUUID->
“04189967-e7e3-4d73-9961-43c183f53eb6″],
” from “,
StyleBox[“(3a)”,
FontWeight->”Bold”],
” as functions of time on the interval “,
StyleBox[“{t,t0,tmax}”, “Input”],
“,”,
StyleBox[” “, “Input”],
“using the “,
StyleBox[“PlotStyle”, “Input”],
” option as in “,
StyleBox[“(2a)”,
FontWeight->”Bold”],
” to distinguish the two graphs with different colors. When (approximately) \
does the trajectory plotted in “,
StyleBox[“(3a)”,
FontWeight->”Bold”],
” cross the “,
Cell[BoxData[
FormBox[“q”, TraditionalForm]],ExpressionUUID->
“5e36e69b-9073-4556-b941-9ff6dbf9fb8d”],
“-nullcline? Can you tell this from the phase portrait? ”
}], “Text”,
CellChangeTimes->{{3.500726229716704*^9, 3.500726329811214*^9}, {
3.50072639268343*^9, 3.500726430138003*^9}, {3.669217314377448*^9,
3.669217318577343*^9}, {3.6692173560399837`*^9, 3.669217363447701*^9},
3.690055327841899*^9, {3.6900556015892*^9, 3.690055618843083*^9}, {
3.690055672922903*^9, 3.690055686610018*^9}, 3.827337647829336*^9,
3.827338698387704*^9},ExpressionUUID->”2123a400-a76f-4ea6-8b6b-\
af84cffb7a6e”]
}, Open ]]
}, Open ]],

Cell[CellGroupData[{

Cell[“Direction Field”, “Section”,
CellChangeTimes->{{3.50072669032579*^9, 3.500726691853728*^9}, {
3.827337875316407*^9,
3.827337885349677*^9}},ExpressionUUID->”b9200e5e-6fa5-46dc-a1d5-\
ef739ee0f301″],

Cell[CellGroupData[{

Cell[“Exercise 4a: Direction field”, “Subsection”,
CellChangeTimes->{{3.500726220572955*^9, 3.50072622772503*^9}, {
3.669212606701589*^9, 3.6692126172844667`*^9}, {3.8273378888856354`*^9,
3.8273378899212723`*^9}},ExpressionUUID->”0494989a-ff99-4c0c-afad-\
9f8441f57f0f”],

Cell[TextData[{
“To get a more complete picture of the phase portrait, \
let\[CloseCurlyQuote]s superimpose the plot from “,
StyleBox[“(3c)”,
FontWeight->”Bold”],
” on a plot of the direction field. Use the “,
StyleBox[“Mathematica”,
FontSlant->”Italic”],
” command “,
StyleBox[“VectorPlot”, “Input”],
” to make a picture of the direction field, and then use “,
StyleBox[“Show”, “Input”],
” again to combine this with your plot from “,
StyleBox[“(3c)”,
FontWeight->”Bold”],
“. Consider changing the “,
StyleBox[“PlotRange”, “Input”],
” to make sure your plot is showing the most interesting information.”
}], “Text”,
CellChangeTimes->{{3.6692123483258467`*^9, 3.6692124976006813`*^9}, {
3.669217423862277*^9, 3.669217435013424*^9}, {3.669219063653988*^9,
3.669219064676626*^9}, {3.669223610816729*^9, 3.669223611591021*^9}, {
3.690055034244256*^9, 3.69005508167489*^9}, {3.8273388353406534`*^9,
3.8273388591954784`*^9}, {3.8273392919161477`*^9, 3.8273392928839006`*^9}, {
3.8273393229640656`*^9,
3.827339330196105*^9}},ExpressionUUID->”31dc0d65-f05e-4136-977a-\
f78bd7ebf9ce”]
}, Open ]],

Cell[CellGroupData[{

Cell[“Exercise 4b: Reflection”, “Subsection”,
CellChangeTimes->{{3.500726220572955*^9, 3.50072622772503*^9}, {
3.669212606701589*^9, 3.6692126597631407`*^9}, {3.7524329463055143`*^9,
3.752432947591498*^9}, {3.8273388813397684`*^9,
3.8273388849235764`*^9}},ExpressionUUID->”d36699cc-7dc4-457a-a179-\
c62d10cadf76″],

Cell[TextData[{
“Does the direction field agree with your stability and classification \
results for the equilibrium solution from “,
StyleBox[“(1c)”,
FontWeight->”Bold”],
“? Does the direction field have the expected behavior near the nullclines? \
Explain your answers below.”
}], “Text”,
CellChangeTimes->{{3.500726693813575*^9, 3.500726727805596*^9}, {
3.6692125286876917`*^9, 3.669212530223569*^9}, {3.669212679530326*^9,
3.669212684514235*^9}, {3.752432950719561*^9, 3.752432951975504*^9}, {
3.8273388894270163`*^9, 3.827338909106542*^9}, {3.827339070507198*^9,
3.8273390915698233`*^9}, {3.827339126425726*^9, 3.8273391691461954`*^9}, {
3.827339362601963*^9,
3.8273394674671955`*^9}},ExpressionUUID->”2f12f23f-d7a7-4a8b-b135-\
1245a8229ce6″]
}, Open ]]
}, Open ]]
}, Open ]]
}, Open ]]
},
WindowSize->{762., 574.8},
WindowMargins->{{105, Automatic}, {Automatic, 0}},
PrivateNotebookOptions->{“VersionedStylesheet”->{“Default.nb”[8.] -> False}},
ShowSelection->True,
FrontEndVersion->”12.1 for Microsoft Windows (64-bit) (June 19, 2020)”,
StyleDefinitions->”Default.nb”,
ExpressionUUID->”8088865a-1e9c-4fdb-aa6c-cc376373c5d5″
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[545, 20, 255, 4, 53, “Subsection”,ExpressionUUID->”800d4a31-60ab-48f9-b3a2-13ee24056a98″],
Cell[803, 26, 253, 4, 37, “Subsection”,ExpressionUUID->”f0bcaa54-ea11-4ae4-b366-bc13ed014c81″],
Cell[CellGroupData[{
Cell[1081, 34, 420, 6, 70, “Title”,ExpressionUUID->”84bcea7c-40c1-41ca-a24d-72fd5154f6ac”],
Cell[1504, 42, 158, 3, 53, “Subtitle”,ExpressionUUID->”72f6b4fc-46ad-42be-b6f8-61b2bbf8baa0″],
Cell[1665, 47, 1241, 34, 164, “Text”,ExpressionUUID->”0eed481c-8a3b-427c-916d-b6bfb3910c0c”],
Cell[CellGroupData[{
Cell[2931, 85, 159, 3, 30, “Subsubtitle”,ExpressionUUID->”a002028b-39aa-4c4a-b093-00bbeb075f18″],
Cell[3093, 90, 4832, 133, 390, “Text”,ExpressionUUID->”cd515f83-4535-4549-9805-151c6d2fbe92″],
Cell[7928, 225, 642, 22, 49, “Input”,ExpressionUUID->”3bc2689b-b853-435f-a2fb-4ba66b835075″],
Cell[CellGroupData[{
Cell[8595, 251, 160, 3, 67, “Section”,ExpressionUUID->”e93f162a-a14e-4d25-905c-195ce4bff4ce”],
Cell[CellGroupData[{
Cell[8780, 258, 275, 4, 54, “Subsection”,ExpressionUUID->”22bca350-4216-4c6d-9291-65c455729733″],
Cell[9058, 264, 1071, 23, 127, “Text”,ExpressionUUID->”daf10284-e7a1-444d-bcce-9887fc9e19d5″]
}, Open ]],
Cell[CellGroupData[{
Cell[10166, 292, 266, 3, 54, “Subsection”,ExpressionUUID->”c98f0aa7-c11a-4c17-a3b4-afbaed3e18ad”],
Cell[10435, 297, 2356, 72, 168, “Text”,ExpressionUUID->”d97234a0-2235-4c63-8502-869c3e548fb0″]
}, Open ]],
Cell[CellGroupData[{
Cell[12828, 374, 321, 5, 54, “Subsection”,ExpressionUUID->”d7d98e63-203a-4566-9fc0-2e79c1ae99b6″],
Cell[13152, 381, 892, 20, 127, “Text”,ExpressionUUID->”d42b72f4-78f2-4a58-a780-3a2cfe9560b7″]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[14105, 408, 238, 4, 32, “Subsubtitle”,ExpressionUUID->”72ea75d0-56ee-4685-b690-b9280fab0011″],
Cell[14346, 414, 793, 13, 150, “Text”,ExpressionUUID->”76984700-2913-4812-a11b-c2b1ac52ffb6″],
Cell[CellGroupData[{
Cell[15164, 431, 154, 3, 67, “Section”,ExpressionUUID->”bf0a4ff8-c21c-4b8b-8b3f-4f096f23a065″],
Cell[15321, 436, 1597, 55, 104, “Text”,ExpressionUUID->”3dc56024-e145-4f63-acd8-ed0742f362cb”],
Cell[CellGroupData[{
Cell[16943, 495, 196, 3, 54, “Subsection”,ExpressionUUID->”9a9452f7-7c79-4637-99d5-6148df8db3b2″],
Cell[17142, 500, 959, 25, 104, “Text”,ExpressionUUID->”91e80fc5-16d7-44b2-a57d-0b74f7662343″]
}, Open ]],
Cell[CellGroupData[{
Cell[18138, 530, 189, 3, 54, “Subsection”,ExpressionUUID->”a3240a71-9108-41ad-abe2-0830dec33854″],
Cell[18330, 535, 432, 12, 35, “Text”,ExpressionUUID->”12597281-6c1c-40c8-b245-c3563862443d”]
}, Open ]],
Cell[CellGroupData[{
Cell[18799, 552, 189, 3, 54, “Subsection”,ExpressionUUID->”b1d51755-18cd-4256-9afd-b56f893b38ce”],
Cell[18991, 557, 667, 16, 81, “Text”,ExpressionUUID->”89ef7156-a952-4bfc-9f13-fdb1fa41b8d2″]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[19707, 579, 164, 3, 67, “Section”,ExpressionUUID->”ff6b8123-2cff-41c3-bb3e-201efa5bf916″],
Cell[19874, 584, 514, 11, 81, “Text”,ExpressionUUID->”482d8d08-f9c0-4509-b987-c8b759dfa861″],
Cell[CellGroupData[{
Cell[20413, 599, 228, 3, 54, “Subsection”,ExpressionUUID->”9223b786-bca2-4b1a-84b8-7910d89240ae”],
Cell[20644, 604, 1895, 47, 146, “Text”,ExpressionUUID->”784c74e9-a160-45f0-a7b2-548ad6e567bb”]
}, Open ]],
Cell[CellGroupData[{
Cell[22576, 656, 272, 4, 54, “Subsection”,ExpressionUUID->”e47c5f39-c989-4c2f-a6e0-b7f1bb129f37″],
Cell[22851, 662, 571, 14, 58, “Text”,ExpressionUUID->”13c5742a-aa80-4053-a8cf-c148f194d56b”]
}, Open ]],
Cell[CellGroupData[{
Cell[23459, 681, 234, 4, 54, “Subsection”,ExpressionUUID->”4ee755a4-5dc9-435d-8fe8-8b1c2a0c0c70″],
Cell[23696, 687, 773, 20, 81, “Text”,ExpressionUUID->”3c78688c-7e28-42c0-9ca2-a9a264704bb4″]
}, Open ]],
Cell[CellGroupData[{
Cell[24506, 712, 226, 4, 54, “Subsection”,ExpressionUUID->”f4885494-1847-48a9-9f53-bc13d4be2284″],
Cell[24735, 718, 1329, 37, 104, “Text”,ExpressionUUID->”2123a400-a76f-4ea6-8b6b-af84cffb7a6e”]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[26113, 761, 208, 4, 67, “Section”,ExpressionUUID->”b9200e5e-6fa5-46dc-a1d5-ef739ee0f301″],
Cell[CellGroupData[{
Cell[26346, 769, 276, 4, 54, “Subsection”,ExpressionUUID->”0494989a-ff99-4c0c-afad-9f8441f57f0f”],
Cell[26625, 775, 1113, 26, 104, “Text”,ExpressionUUID->”31dc0d65-f05e-4136-977a-f78bd7ebf9ce”]
}, Open ]],
Cell[CellGroupData[{
Cell[27775, 806, 322, 5, 54, “Subsection”,ExpressionUUID->”d36699cc-7dc4-457a-a179-c62d10cadf76″],
Cell[28100, 813, 770, 15, 81, “Text”,ExpressionUUID->”2f12f23f-d7a7-4a8b-b135-1245a8229ce6″]
}, Open ]]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)